skip to content
Introduction to Membrane Noise Preview this item
ClosePreview this item
Checking...

Introduction to Membrane Noise

Author: Louis J DeFelice
Publisher: Boston, MA : Springer US, 1981.
Edition/Format:   eBook : Bibliographic data : EnglishView all editions and formats
Summary:
I started working on membrane noise in 1967 with David Firth in the Department of Physiology at McGill University. I began writing this book in the summer of 1975 at Emory University under a grant from the National Library of Medicine. Part of the writing was also done at the Marine Biological Laboratory Library in Woods Hole and in the Library of the Stazione Zoologica in Naples. I wrote this book because in the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Printed edition:
Material Type: Bibliographic data, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Louis J DeFelice
ISBN: 9781461331353 1461331358 9781461331377 1461331374
OCLC Number: 840281929
Description: 1 online resource (516 pages)
Contents: Animal Electricity --
1. Newton's Opticks and Ganot's Physics --
2. Pre-Galvani Experiments and the Leyden Jar --
3. Benjamin Franklin and the Magic Square --
4. Volta's Electrophorus --
5. Galvani's First Experiment --
6. Galvani's Second Experiment --
7. Animal Electricity Described in Ganot's Physics --
8. The Voltaic Pile and the Electric Fish --
9. Examples --
10. Models and Analogies Used in Electrophysiology --
Basic Electrophysiology --
11. Salt Water Conducts Electricity --
12. Resistance of Salt Water --
13. How Ions Move: The Flux Equation --
14. First Application of the Flux Equation: The Nernst Relation --
15. Second Application of the Flux Equation: The Diffusion Potential --
16. An Example of the Nernst Relation: The AgCl Electrode --
17. An Example of the Diffusion Potential: The Agar Bridge --
18. Steady Current in Ionic Solutions --
19. The Integral Resistance --
20. The Flux Equation and Potential Profile --
21. An Example: The Glass Microelectrode --
22. The Effect of Pressure on Integral Resistance --
23. Membrane Rectification and Reactance --
24. Inductance and Capacitance: Time Domain --
25. Fourier Transformation: The Delta function --
26. Inductance and Capacitance: Frequency Domain --
27. Equivalent Circuits of Membranes --
28. Equivalent Circuits of Cells --
29. Cable Equation: Passive Properties --
30. Equivalent Circuits and Active Membranes --
Basic Circuit Theory --
31. Voltage and Current Sources --
32. Frequency Composition of Signals --
33. The Mean and the Variance --
34. Spectral Density and Rayleigh's Theorem --
35. Spectral Density and Source Impedance --
36. Examples --
37. Power Spectral Density --
Noise Analysis --
38. Filtering --
39. Measurement of Spectral Density --
40. Effect of Filter Bandwidth --
41. The Convolution Theorem --
42. The Correlation Theorem --
43. Measurement of Correlation Functions --
44. Correlation Functions: Examples --
45. Integral Spectra --
46. Relationship between the Integral Spectrum and the Correlation Function --
47. Examples of Integral Spectra --
48. Inversion of the Integral Spectrum --
49. The Integral Spectral Density --
50. Multiple Lorentzians --
51. Examples of the Inversion Formula --
52. Correlation Functions of Filtered Noise --
53. The Exponential Integral --
54. The Effect of Finite Time Measurements --
55. Examples of Error Calculations --
56. Comparison of Errors in Correlation Functions, Integral Spectra, and Spectral Densities --
57. Correcting Correlation Functions for ac Coupling --
Noise Sources --
A. White Noise --
58. Johnson Noise --
59. Derivation of the Nyquist Formula --
60. Nyquist Formula for an Arbitrary Impedance --
61. Quantum Theory Formulation of Nyquist's Equation --
62. Johnson Noise and the Nernst Equation --
63. Measurement of Johnson Noise --
B. I/f Noise --
64. Excess Noise in Carbon Resistors --
65. Excess Noise Depends on Current --
66. The Effect of Resistor Size on Excess Noise --
67. Resistor Noise: A Selected Chronological Bibliography --
68. Excess Noise in Ionic Conductors --
69. Excess Noise in Lipid Bilayers --
70. I/f Noise and Concentration Gradients --
71. Theories of Excess Noise --
C. Lorentzian Noise --
72. The Two-State Channel --
73. The Relationship between Channel Noise and Current Noise --
74. Two-State Channels in Series --
75. Bernoulli's Distribution for Two Independent Two-State Subunits --
76. Correlation Functions for Two-State Channels in Series --
77. The Relationship between Channel Models and Kinetic Schemes --
D. Campbell's Theorem --
78. The Mean and the Variance --
79. Noise Spectra from Campbell's Theorem --
Membrane Impedance --
80. Equivalent Circuits of Kinetic Equations --
81. The Small-Signal Impedance of a Population of Ionic Channels --
82. The Small-Signal Impedance of Channels in a Membrane --
83. Transient Response to the RrLC Circuit --
84. Voltage Noise from Channels Embedded in a Membrane --
85. The Equivalent Noise Source for Channel Noise --
86. Current Noise Parameters Derived from Voltage Noise and Impedance --
87. Small-Signal Impedance of the HH-Axon Membrane --
88. The Heaviside Line and the RrLC Cable --
Experimental Results --
89. Miniature End-Plate Potentials --
90. Acetylcholine Noise --
91. Other Types of Chemically Induced Noise --
92. ACh Noise under Voltage Clamp --
93. Other Types of Chemically Induced Noise under Voltage Clamp --
94. Effect of Procaine on ACh Noise --
95. Effect of Dithiothreitol on ACh Noise --
96. Current Noise from Denervated Skeletal Muscle --
97. Single-Channel Currents --
98. Ion Flow through the ACh Channel. A Noise Analysis --
99. Glutamate Noise I --
100. Glutamate Noise II --
101. Electrical Noise from Motoneurons --
102. Excitability Noise in Neurons --
103. Nerve Membrane Noise --
104. Voltage Noise from the Node of Ranvier --
105. The Squid Giant Axon --
106. Current Noise from the Squid Giant Axon --
107. Current Noise from the Node of Ranvier I --
108. Current Noise from the Node of Ranvier II --
109. Small-Signal Impedance of Nerve and Heart Cell-Membranes --
110. Photoreceptor Noise. An Early Study --
References.
Responsibility: by Louis J. DeFelice.

Abstract:

I started working on membrane noise in 1967 with David Firth in the Department of Physiology at McGill University. I wrote this book because in the intervening years membrane noise became a definable  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(2)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/840281929> # Introduction to Membrane Noise
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "840281929" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/606617#Place/boston_ma> ; # Boston, MA
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
   rdfs:comment "Unknown 'gen' value: bdt" ;
   schema:about <http://id.worldcat.org/fast/1070588> ; # Polymers
   schema:about <http://id.worldcat.org/fast/853344> ; # Chemistry
   schema:about <http://dewey.info/class/541.2254/e23/> ;
   schema:bookFormat schema:EBook ;
   schema:creator <http://experiment.worldcat.org/entity/work/data/606617#Person/defelice_louis_j> ; # Louis J. DeFelice
   schema:datePublished "1981" ;
   schema:description "Animal Electricity -- 1. Newton's Opticks and Ganot's Physics -- 2. Pre-Galvani Experiments and the Leyden Jar -- 3. Benjamin Franklin and the Magic Square -- 4. Volta's Electrophorus -- 5. Galvani's First Experiment -- 6. Galvani's Second Experiment -- 7. Animal Electricity Described in Ganot's Physics -- 8. The Voltaic Pile and the Electric Fish -- 9. Examples -- 10. Models and Analogies Used in Electrophysiology -- Basic Electrophysiology -- 11. Salt Water Conducts Electricity -- 12. Resistance of Salt Water -- 13. How Ions Move: The Flux Equation -- 14. First Application of the Flux Equation: The Nernst Relation -- 15. Second Application of the Flux Equation: The Diffusion Potential -- 16. An Example of the Nernst Relation: The AgCl Electrode -- 17. An Example of the Diffusion Potential: The Agar Bridge -- 18. Steady Current in Ionic Solutions -- 19. The Integral Resistance -- 20. The Flux Equation and Potential Profile -- 21. An Example: The Glass Microelectrode -- 22. The Effect of Pressure on Integral Resistance -- 23. Membrane Rectification and Reactance -- 24. Inductance and Capacitance: Time Domain -- 25. Fourier Transformation: The Delta function -- 26. Inductance and Capacitance: Frequency Domain -- 27. Equivalent Circuits of Membranes -- 28. Equivalent Circuits of Cells -- 29. Cable Equation: Passive Properties -- 30. Equivalent Circuits and Active Membranes -- Basic Circuit Theory -- 31. Voltage and Current Sources -- 32. Frequency Composition of Signals -- 33. The Mean and the Variance -- 34. Spectral Density and Rayleigh's Theorem -- 35. Spectral Density and Source Impedance -- 36. Examples -- 37. Power Spectral Density -- Noise Analysis -- 38. Filtering -- 39. Measurement of Spectral Density -- 40. Effect of Filter Bandwidth -- 41. The Convolution Theorem -- 42. The Correlation Theorem -- 43. Measurement of Correlation Functions -- 44. Correlation Functions: Examples -- 45. Integral Spectra -- 46. Relationship between the Integral Spectrum and the Correlation Function -- 47. Examples of Integral Spectra -- 48. Inversion of the Integral Spectrum -- 49. The Integral Spectral Density -- 50. Multiple Lorentzians -- 51. Examples of the Inversion Formula -- 52. Correlation Functions of Filtered Noise -- 53. The Exponential Integral -- 54. The Effect of Finite Time Measurements -- 55. Examples of Error Calculations -- 56. Comparison of Errors in Correlation Functions, Integral Spectra, and Spectral Densities -- 57. Correcting Correlation Functions for ac Coupling -- Noise Sources -- A. White Noise -- 58. Johnson Noise -- 59. Derivation of the Nyquist Formula -- 60. Nyquist Formula for an Arbitrary Impedance -- 61. Quantum Theory Formulation of Nyquist's Equation -- 62. Johnson Noise and the Nernst Equation -- 63. Measurement of Johnson Noise -- B. I/f Noise -- 64. Excess Noise in Carbon Resistors -- 65. Excess Noise Depends on Current -- 66. The Effect of Resistor Size on Excess Noise -- 67. Resistor Noise: A Selected Chronological Bibliography -- 68. Excess Noise in Ionic Conductors -- 69. Excess Noise in Lipid Bilayers -- 70. I/f Noise and Concentration Gradients -- 71. Theories of Excess Noise -- C. Lorentzian Noise -- 72. The Two-State Channel -- 73. The Relationship between Channel Noise and Current Noise -- 74. Two-State Channels in Series -- 75. Bernoulli's Distribution for Two Independent Two-State Subunits -- 76. Correlation Functions for Two-State Channels in Series -- 77. The Relationship between Channel Models and Kinetic Schemes -- D. Campbell's Theorem -- 78. The Mean and the Variance -- 79. Noise Spectra from Campbell's Theorem -- Membrane Impedance -- 80. Equivalent Circuits of Kinetic Equations -- 81. The Small-Signal Impedance of a Population of Ionic Channels -- 82. The Small-Signal Impedance of Channels in a Membrane -- 83. Transient Response to the RrLC Circuit -- 84. Voltage Noise from Channels Embedded in a Membrane -- 85. The Equivalent Noise Source for Channel Noise -- 86. Current Noise Parameters Derived from Voltage Noise and Impedance -- 87. Small-Signal Impedance of the HH-Axon Membrane -- 88. The Heaviside Line and the RrLC Cable -- Experimental Results -- 89. Miniature End-Plate Potentials -- 90. Acetylcholine Noise -- 91. Other Types of Chemically Induced Noise -- 92. ACh Noise under Voltage Clamp -- 93. Other Types of Chemically Induced Noise under Voltage Clamp -- 94. Effect of Procaine on ACh Noise -- 95. Effect of Dithiothreitol on ACh Noise -- 96. Current Noise from Denervated Skeletal Muscle -- 97. Single-Channel Currents -- 98. Ion Flow through the ACh Channel. A Noise Analysis -- 99. Glutamate Noise I -- 100. Glutamate Noise II -- 101. Electrical Noise from Motoneurons -- 102. Excitability Noise in Neurons -- 103. Nerve Membrane Noise -- 104. Voltage Noise from the Node of Ranvier -- 105. The Squid Giant Axon -- 106. Current Noise from the Squid Giant Axon -- 107. Current Noise from the Node of Ranvier I -- 108. Current Noise from the Node of Ranvier II -- 109. Small-Signal Impedance of Nerve and Heart Cell-Membranes -- 110. Photoreceptor Noise. An Early Study -- References."@en ;
   schema:description "I started working on membrane noise in 1967 with David Firth in the Department of Physiology at McGill University. I began writing this book in the summer of 1975 at Emory University under a grant from the National Library of Medicine. Part of the writing was also done at the Marine Biological Laboratory Library in Woods Hole and in the Library of the Stazione Zoologica in Naples. I wrote this book because in the intervening years membrane noise became a definable subdivision of membrane biophysics and seemed to deserve a uniform treatment in one volume. Not surprisingly, this turned out to be much more difficult than I had imagined and some areas of the subject that ought to be included have been left out, either for reasons of space or because of my own inability to keep up with all aspects of the field. This book is written for biologists interested in noise and for physicists and electrical engineers interested in biology. The first three chapters attempt to bring both groups to a common point of understanding of electronics and electrophysiology necessary to the study of noise and impedance in membranes. These chapters arose out of a course given over a period of six years to electrical engineers from the Georgia Institute of Technology and biologists from Emory University School of Medicine."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/606617> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isSimilarTo <http://worldcat.org/entity/work/data/606617#CreativeWork/> ;
   schema:name "Introduction to Membrane Noise"@en ;
   schema:productID "840281929" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/840281929#PublicationEvent/boston_ma_springer_us_1981> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/606617#Agent/springer_us> ; # Springer US
   schema:url <http://link.springer.com/10.1007/978-1-4613-3135-3> ;
   schema:url <http://dx.doi.org/10.1007/978-1-4613-3135-3> ;
   schema:workExample <http://worldcat.org/isbn/9781461331353> ;
   schema:workExample <http://worldcat.org/isbn/9781461331377> ;
   schema:workExample <http://dx.doi.org/10.1007/978-1-4613-3135-3> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/840281929> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/606617#Person/defelice_louis_j> # Louis J. DeFelice
    a schema:Person ;
   schema:familyName "DeFelice" ;
   schema:givenName "Louis J." ;
   schema:name "Louis J. DeFelice" ;
    .

<http://id.worldcat.org/fast/1070588> # Polymers
    a schema:Intangible ;
   schema:name "Polymers"@en ;
    .

<http://id.worldcat.org/fast/853344> # Chemistry
    a schema:Intangible ;
   schema:name "Chemistry"@en ;
    .

<http://link.springer.com/10.1007/978-1-4613-3135-3>
   rdfs:comment "from Springer" ;
   rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://worldcat.org/isbn/9781461331353>
    a schema:ProductModel ;
   schema:isbn "1461331358" ;
   schema:isbn "9781461331353" ;
    .

<http://worldcat.org/isbn/9781461331377>
    a schema:ProductModel ;
   schema:isbn "1461331374" ;
   schema:isbn "9781461331377" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.