skip to content
Introduction to partial differential equations for scientists and engineers using Mathematica Preview this item
ClosePreview this item
Checking...

Introduction to partial differential equations for scientists and engineers using Mathematica

Author: Kuzman Adzievski; A H Siddiqi
Publisher: Boca Raton, FL : CRC Press, [2014]
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Kuzman Adzievski; A H Siddiqi
ISBN: 9781466510562 1466510560
OCLC Number: 827951745
Notes: "A Chapman & Hall book."
Description: xiii, 634 pages : illustrations ; 25 cm
Contents: Machine generated contents note: 1.1. Fourier Series of Periodic Functions --
1.2. Convergence of Fourier Series --
1.3. Integration and Differentiation of Fourier Series --
1.4. Fourier Sine and Cosine Series --
1.5. Projects Using Mathematica --
2.1. The Laplace Transform --
2.1.1. Definition and Properties of the Laplace Transform --
2.1.2. Step and Impulse Functions --
2.1.3. Initial-Value Problems and the Laplace Transform --
2.1.4. The Convolution Theorem --
2.2. Fourier Transforms --
2.2.1. Definition of Fourier Transforms --
2.2.2. Properties of Fourier Transforms --
2.3. Projects Using Mathematica --
3.1. Regular Sturm-Liouville Problems --
3.2. Eigenfunction Expansions --
3.3. Singular Sturm-Liouville Problems --
3.3.1. Definition of Singular Sturm-Liouville Problems --
3.3.2. Legendre's Differential Equation --
3.3.3. Bessel's Differential Equation --
3.4. Projects Using Mathematica --
4.1. Basic Concepts and Terminology --
4.2. Partial Differential Equations of the First Order --
4.3. Linear Partial Differential Equations of the Second Order --
4.3.1. Important Equations of Mathematical Physics --
4.3.2. Classification of Linear PDEs of the Second Order --
4.4. Boundary and Initial Conditions --
4.5. Projects Using Mathematica --
5.1.d'Alembert's Method --
5.2. Separation of Variables Method for the Wave Equation --
5.3. The Wave Equation on Rectangular Domains --
5.3.1. Homogeneous Wave Equation on a Rectangle --
5.3.2. Nonhomogeneous Wave Equation on a Rectangle --
5.3.3. The Wave Equation on a Rectangular Solid --
5.4. The Wave Equation on Circular Domains --
5.4.1. The Wave Equation in Polar Coordinates --
5.4.2. The Wave Equation in Spherical Coordinates --
5.5. Integral Transform Methods for the Wave Equation --
5.5.1. The Laplace Transform Method for the Wave Equation --
5.5.2. The Fourier Transform Method for the Wave Equation --
5.6. Projects Using Mathematica --
6.1. The Fundamental Solution of the Heat Equation --
6.2. Separation of Variables Method for the Heat Equation --
6.3. The Heat Equation in Higher Dimensions --
6.3.1. Green Function of the Higher Dimensional Heat Equation --
6.3.2. The Heat Equation on a Rectangle --
6.3.3. The Heat Equation in Polar Coordinates --
6.3.4. The Heat Equation in Cylindrical Coordinates --
6.3.5. The Heat Equation in Spherical Coordinates --
6.4. Integral Transform Methods for the Heat Equation --
6.4.1. The Laplace Transform Method for the Heat Equation --
6.4.2. The Fourier Transform Method for the Heat Equation --
6.5. Projects Using Mathematica --
7.1. The Fundamental Solution of the Laplace Equation --
7.2. Laplace and Poisson Equations on Rectangular Domains --
7.3. Laplace and Poisson Equations on Circular Domains --
7.3.1. Laplace Equation in Polar Coordinates --
7.3.2. Poisson Equation in Polar Coordinates --
7.3.3. Laplace Equation in Cylindrical Coordinates --
7.3.4. Laplace Equation in Spherical Coordinates --
7.4. Integral Transform Methods for the Laplace Equation --
7.4.1. The Fourier Transform Method for the Laplace Equation --
7.4.2. The Hankel Transform Method --
7.5. Projects Using Mathematica --
8.1. Basics of Linear Algebra and Iterative Methods --
8.2. Finite Differences --
8.3. Finite Difference Methods for Laplace & Poisson Equations --
8.4. Finite Difference Methods for the Heat Equation --
8.5. Finite Difference Methods for the Wave Equation --
A. Table of Laplace Transforms --
B. Table of Fourier Transforms --
C. Series and Uniform Convergence Facts --
D. Basic Facts of Ordinary Differential Equations --
E. Vector Calculus Facts --
F.A Summary of Analytic Function Theory --
G. Euler Gamma and Beta Functions --
H. Basics of Mathematica.
Responsibility: Kuzman Adzievski, Abul Hasan Siddiqi.
More information:

Reviews

Editorial reviews

Publisher Synopsis

"The presentation is simple and clear, with no sacrifice of rigor. Throughout the text, the illustrations, numerous solved examples and the use of Mathematica to visualize computations have been Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(4)

User lists with this item (1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/827951745> # Introduction to partial differential equations for scientists and engineers using Mathematica
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "827951745" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/flu> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1783425722#Topic/mathematica> ; # Mathematica
   schema:about <http://id.loc.gov/authorities/subjects/sh85037912> ; # Differential equations, Partial
   schema:about <http://experiment.worldcat.org/entity/work/data/1783425722#Topic/differential_equations_partial> ; # Differential equations, Partial
   schema:about <http://dewey.info/class/515.353/e23/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1783425722#Topic/partielle_differentialgleichung> ; # Partielle Differentialgleichung
   schema:author <http://experiment.worldcat.org/entity/work/data/1783425722#Person/adzievski_kuzman> ; # Kuzman Adzievski
   schema:author <http://viaf.org/viaf/8037470> ; # A. H. Siddiqi
   schema:bookFormat bgn:PrintBook ;
   schema:datePublished "2014" ;
   schema:description "Machine generated contents note: 1.1. Fourier Series of Periodic Functions -- 1.2. Convergence of Fourier Series -- 1.3. Integration and Differentiation of Fourier Series -- 1.4. Fourier Sine and Cosine Series -- 1.5. Projects Using Mathematica -- 2.1. The Laplace Transform -- 2.1.1. Definition and Properties of the Laplace Transform -- 2.1.2. Step and Impulse Functions -- 2.1.3. Initial-Value Problems and the Laplace Transform -- 2.1.4. The Convolution Theorem -- 2.2. Fourier Transforms -- 2.2.1. Definition of Fourier Transforms -- 2.2.2. Properties of Fourier Transforms -- 2.3. Projects Using Mathematica -- 3.1. Regular Sturm-Liouville Problems -- 3.2. Eigenfunction Expansions -- 3.3. Singular Sturm-Liouville Problems -- 3.3.1. Definition of Singular Sturm-Liouville Problems -- 3.3.2. Legendre's Differential Equation -- 3.3.3. Bessel's Differential Equation -- 3.4. Projects Using Mathematica -- 4.1. Basic Concepts and Terminology -- 4.2. Partial Differential Equations of the First Order -- 4.3. Linear Partial Differential Equations of the Second Order -- 4.3.1. Important Equations of Mathematical Physics -- 4.3.2. Classification of Linear PDEs of the Second Order -- 4.4. Boundary and Initial Conditions -- 4.5. Projects Using Mathematica -- 5.1.d'Alembert's Method -- 5.2. Separation of Variables Method for the Wave Equation -- 5.3. The Wave Equation on Rectangular Domains -- 5.3.1. Homogeneous Wave Equation on a Rectangle -- 5.3.2. Nonhomogeneous Wave Equation on a Rectangle -- 5.3.3. The Wave Equation on a Rectangular Solid -- 5.4. The Wave Equation on Circular Domains -- 5.4.1. The Wave Equation in Polar Coordinates -- 5.4.2. The Wave Equation in Spherical Coordinates -- 5.5. Integral Transform Methods for the Wave Equation -- 5.5.1. The Laplace Transform Method for the Wave Equation -- 5.5.2. The Fourier Transform Method for the Wave Equation -- 5.6. Projects Using Mathematica -- 6.1. The Fundamental Solution of the Heat Equation -- 6.2. Separation of Variables Method for the Heat Equation -- 6.3. The Heat Equation in Higher Dimensions -- 6.3.1. Green Function of the Higher Dimensional Heat Equation -- 6.3.2. The Heat Equation on a Rectangle -- 6.3.3. The Heat Equation in Polar Coordinates -- 6.3.4. The Heat Equation in Cylindrical Coordinates -- 6.3.5. The Heat Equation in Spherical Coordinates -- 6.4. Integral Transform Methods for the Heat Equation -- 6.4.1. The Laplace Transform Method for the Heat Equation -- 6.4.2. The Fourier Transform Method for the Heat Equation -- 6.5. Projects Using Mathematica -- 7.1. The Fundamental Solution of the Laplace Equation -- 7.2. Laplace and Poisson Equations on Rectangular Domains -- 7.3. Laplace and Poisson Equations on Circular Domains -- 7.3.1. Laplace Equation in Polar Coordinates -- 7.3.2. Poisson Equation in Polar Coordinates -- 7.3.3. Laplace Equation in Cylindrical Coordinates -- 7.3.4. Laplace Equation in Spherical Coordinates -- 7.4. Integral Transform Methods for the Laplace Equation -- 7.4.1. The Fourier Transform Method for the Laplace Equation -- 7.4.2. The Hankel Transform Method -- 7.5. Projects Using Mathematica -- 8.1. Basics of Linear Algebra and Iterative Methods -- 8.2. Finite Differences -- 8.3. Finite Difference Methods for Laplace & Poisson Equations -- 8.4. Finite Difference Methods for the Heat Equation -- 8.5. Finite Difference Methods for the Wave Equation -- A. Table of Laplace Transforms -- B. Table of Fourier Transforms -- C. Series and Uniform Convergence Facts -- D. Basic Facts of Ordinary Differential Equations -- E. Vector Calculus Facts -- F.A Summary of Analytic Function Theory -- G. Euler Gamma and Beta Functions -- H. Basics of Mathematica."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1783425722> ;
   schema:inLanguage "en" ;
   schema:name "Introduction to partial differential equations for scientists and engineers using Mathematica"@en ;
   schema:productID "827951745" ;
   schema:workExample <http://worldcat.org/isbn/9781466510562> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB313843> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/827951745> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1783425722#Person/adzievski_kuzman> # Kuzman Adzievski
    a schema:Person ;
   schema:familyName "Adzievski" ;
   schema:givenName "Kuzman" ;
   schema:name "Kuzman Adzievski" ;
    .

<http://experiment.worldcat.org/entity/work/data/1783425722#Topic/differential_equations_partial> # Differential equations, Partial
    a schema:Intangible ;
   schema:name "Differential equations, Partial"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1783425722#Topic/partielle_differentialgleichung> # Partielle Differentialgleichung
    a schema:Intangible ;
   schema:name "Partielle Differentialgleichung"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85037912> # Differential equations, Partial
    a schema:Intangible ;
   schema:name "Differential equations, Partial"@en ;
    .

<http://viaf.org/viaf/8037470> # A. H. Siddiqi
    a schema:Person ;
   schema:familyName "Siddiqi" ;
   schema:givenName "A. H." ;
   schema:name "A. H. Siddiqi" ;
    .

<http://worldcat.org/isbn/9781466510562>
    a schema:ProductModel ;
   schema:isbn "1466510560" ;
   schema:isbn "9781466510562" ;
    .

<http://www.worldcat.org/title/-/oclc/827951745>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/827951745> ; # Introduction to partial differential equations for scientists and engineers using Mathematica
   schema:dateModified "2016-05-11" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.