skip to content
Introduction to the Galois Correspondence Preview this item
ClosePreview this item
Checking...

Introduction to the Galois Correspondence

Author: Maureen H Fenrick
Publisher: Boston, MA : Birkhäuser Boston : Imprint : Birkhäuser, 1998.
Edition/Format:   eBook : Document : English : Second editionView all editions and formats
Database:WorldCat
Summary:
In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Maureen H Fenrick
ISBN: 9781461217923 146121792X
OCLC Number: 853269049
Description: 1 online resource (xi, 244 pages)
Contents: I. Preliminaries --
Groups and Rings --
1. Introduction to Groups --
2. Quotient Groups and Sylow Subgroups --
3. Finite Abelian Groups and Solvable Groups --
4. Introduction to Rings --
5. Factoring in F[x] --
II. Field Extensions --
1. Simple Extensions --
2. Algebraic Extensions --
3. Splitting Fields and Normal Extensions --
III. The Galois Correspondence --
1. The Fundamental Correspondence --
2. The Solvable Correspondence --
IV. Applications --
1. Constructibility --
2. Roots of Unity --
3. Wedderburn's Theorem --
3. Dirichlet's Theorem and Finite Abelian Groups --
Appendix A --
Groups --
1. Group Actions and the Sylow Theorems --
2. Free Groups, Generators and Relations --
Appendix B --
Factoring in Integral Domains --
1. Euclidean Domains and Principal Ideal Domains --
2. Prime and Irreducible Elements --
3. Unique Factorization Domains --
Appendix C --
Vector Spaces --
1. Subspaces, Linear Independence and Spanning --
2. Bases and Dimension.
Responsibility: by Maureen H. Fenrick.
More information:

Abstract:

In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 1r. (4) Construct a regular polygon with n sides for n> 2. If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In chapter 4 we will show that (1) through (3) are not possible and we will determine necessary and sufficient conditions that the integer n must satisfy in order that a regular polygon with n sides be constructible.

Reviews

Editorial reviews

Publisher Synopsis

"It is the clearest this reviewer has ever seen... Particularly remarkable is the author's avoidance of all temptations to give pretty proofs of neatly arranged theorems at the cost of clarity... Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/853269049> # Introduction to the Galois Correspondence
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "853269049" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/622600#Place/boston_ma> ; # Boston, MA
    schema:about <http://id.worldcat.org/fast/948521> ; # Group theory
    schema:about <http://id.worldcat.org/fast/804885> ; # Algebra
    schema:about <http://dewey.info/class/512.2/e23/> ;
    schema:about <http://id.worldcat.org/fast/923918> ; # Field theory (Physics)
    schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
    schema:bookEdition "Second edition." ;
    schema:bookFormat schema:EBook ;
    schema:creator <http://viaf.org/viaf/245929537> ; # Maureen H. Fenrick
    schema:datePublished "1998" ;
    schema:description "In this presentation of the Galois correspondence, modern theories of groups and fields are used to study problems, some of which date back to the ancient Greeks. The techniques used to solve these problems, rather than the solutions themselves, are of primary importance. The ancient Greeks were concerned with constructibility problems. For example, they tried to determine if it was possible, using straightedge and compass alone, to perform any of the following tasks? (1) Double an arbitrary cube; in particular, construct a cube with volume twice that of the unit cube. (2) Trisect an arbitrary angle. (3) Square an arbitrary circle; in particular, construct a square with area 1r. (4) Construct a regular polygon with n sides for n> 2. If we define a real number c to be constructible if, and only if, the point (c, 0) can be constructed starting with the points (0,0) and (1,0), then we may show that the set of constructible numbers is a subfield of the field R of real numbers containing the field Q of rational numbers. Such a subfield is called an intermediate field of Rover Q. We may thus gain insight into the constructibility problems by studying intermediate fields of Rover Q. In chapter 4 we will show that (1) through (3) are not possible and we will determine necessary and sufficient conditions that the integer n must satisfy in order that a regular polygon with n sides be constructible."@en ;
    schema:description "I. Preliminaries -- Groups and Rings -- 1. Introduction to Groups -- 2. Quotient Groups and Sylow Subgroups -- 3. Finite Abelian Groups and Solvable Groups -- 4. Introduction to Rings -- 5. Factoring in F[x] -- II. Field Extensions -- 1. Simple Extensions -- 2. Algebraic Extensions -- 3. Splitting Fields and Normal Extensions -- III. The Galois Correspondence -- 1. The Fundamental Correspondence -- 2. The Solvable Correspondence -- IV. Applications -- 1. Constructibility -- 2. Roots of Unity -- 3. Wedderburn's Theorem -- 3. Dirichlet's Theorem and Finite Abelian Groups -- Appendix A -- Groups -- 1. Group Actions and the Sylow Theorems -- 2. Free Groups, Generators and Relations -- Appendix B -- Factoring in Integral Domains -- 1. Euclidean Domains and Principal Ideal Domains -- 2. Prime and Irreducible Elements -- 3. Unique Factorization Domains -- Appendix C -- Vector Spaces -- 1. Subspaces, Linear Independence and Spanning -- 2. Bases and Dimension."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/622600> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/622600#CreativeWork/> ;
    schema:name "Introduction to the Galois Correspondence"@en ;
    schema:productID "853269049" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/853269049#PublicationEvent/boston_ma_birkhauser_boston_imprint_birkhauser_1998> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/622600#Agent/birkhauser_boston> ; # Birkhäuser Boston
    schema:publisher <http://experiment.worldcat.org/entity/work/data/622600#Agent/birkhauser> ; # Birkhäuser
    schema:publisher <http://experiment.worldcat.org/entity/work/data/622600#Agent/imprint> ; # Imprint
    schema:url <http://dx.doi.org/10.1007/978-1-4612-1792-3> ;
    schema:workExample <http://worldcat.org/isbn/9781461217923> ;
    schema:workExample <http://dx.doi.org/10.1007/978-1-4612-1792-3> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/853269049> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/622600#Agent/birkhauser> # Birkhäuser
    a bgn:Agent ;
    schema:name "Birkhäuser" ;
    .

<http://experiment.worldcat.org/entity/work/data/622600#Agent/birkhauser_boston> # Birkhäuser Boston
    a bgn:Agent ;
    schema:name "Birkhäuser Boston" ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
    schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/804885> # Algebra
    a schema:Intangible ;
    schema:name "Algebra"@en ;
    .

<http://id.worldcat.org/fast/923918> # Field theory (Physics)
    a schema:Intangible ;
    schema:name "Field theory (Physics)"@en ;
    .

<http://id.worldcat.org/fast/948521> # Group theory
    a schema:Intangible ;
    schema:name "Group theory"@en ;
    .

<http://viaf.org/viaf/245929537> # Maureen H. Fenrick
    a schema:Person ;
    schema:familyName "Fenrick" ;
    schema:givenName "Maureen H." ;
    schema:name "Maureen H. Fenrick" ;
    .

<http://worldcat.org/entity/work/data/622600#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/853269049> ; # Introduction to the Galois Correspondence
    .

<http://worldcat.org/isbn/9781461217923>
    a schema:ProductModel ;
    schema:isbn "146121792X" ;
    schema:isbn "9781461217923" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.