passa ai contenuti
Introduction to the h-principle Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Introduction to the h-principle

Autore: Y Eliashberg; N Mishachev
Editore: Providence, R.I. : American Mathematical Society, ©2002.
Serie: Graduate studies in mathematics, v. 48.
Edizione/Formato:   Libro : EnglishVedi tutte le edizioni e i formati
Banca dati:WorldCat
Sommario:

Covers two main methods for proving the $h$-principle: holonomic approximation and convex integration. This book places emphasis on applications to symplectic and contact geometry. It is suitable for  Per saperne di più…

Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

Soggetti
Altri come questo

 

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Tipo documento: Book
Tutti gli autori / Collaboratori: Y Eliashberg; N Mishachev
ISBN: 0821832271 9780821832271
Numero OCLC: 49312496
Descrizione: xvii, 206 p. : ill. ; 26 cm.
Contenuti: Intrigue Holonomic approximation: Jets and holonomy Thom transversality theorem Holonomic approximation Applications Differential relations and Gromov's $h$-principle: Differential relations Homotopy principle Open Diff $V$-invariant differential relations Applications to closed manifolds The homotopy principle in symplectic geometry: Symplectic and contact basics Symplectic and contact structures on open manifolds Symplectic and contact structures on closed manifolds Embeddings into symplectic and contact manifolds Microflexibility and holonomic $\mathcal{R}$-approximation First applications of microflexibility Microflexible $\mathfrak{U}$-invariant differential relations Further applications to symplectic geometry Convex integration: One-dimensional convex integration Homotopy principle for ample differential relations Directed immersions and embeddings First order linear differential operators Nash-Kuiper theorem Bibliography Index.
Titolo della serie: Graduate studies in mathematics, v. 48.
Responsabilità: Y. Eliashberg, N. Mishachev.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/49312496>
library:oclcnum"49312496"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/49312496>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/893432>
rdf:typeschema:Intangible
schema:name"Differentiable manifolds"@en
schema:name"Differentiable manifolds."@en
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/940919>
rdf:typeschema:Intangible
schema:name"Geometry, Differential"@en
schema:name"Geometry, Differential."@en
schema:about
<http://id.worldcat.org/fast/893451>
rdf:typeschema:Intangible
schema:name"Differential equations--Numerical solutions"@en
schema:name"Differential equations--Numerical solutions."@en
schema:about
schema:about
schema:contributor
schema:copyrightYear"2002"
schema:creator
schema:datePublished"2002"
schema:exampleOfWork<http://worldcat.org/entity/work/id/1019449>
schema:inLanguage"en"
schema:name"Introduction to the h-principle"@en
schema:numberOfPages"206"
schema:publisher
schema:url
schema:workExample

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.