skip to content
An Introduction to the Kähler-Ricci flow Preview this item
ClosePreview this item
Checking...

An Introduction to the Kähler-Ricci flow

Author: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; SpringerLink (Online service)
Publisher: Cham, Switzerland : Springer, ©2013.
Series: Lecture notes in mathematics (Springer-Verlag), 2086.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Printed edition:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; SpringerLink (Online service)
ISBN: 9783319008196 3319008196
OCLC Number: 859522979
Description: 1 online resource (viii, 333 p.) : ill.
Contents: Introduction / Sébastien Boucksom and Philippe Eyssidieux --
An Introduction to Fully Nonlinear Parabolic Equations / Cyril Imbert and Luis Silvestre --
An Introduction to the Kähler-Ricci Flow / Jian Song and Ben Weinkove --
Regularizing Properties of the Kähler-Ricci Flow / Sébastien Boucksom and Vincent Guedj --
The Kähler-Ricci Flow on Fano Manifolds / Huai-Dong Cao --
Convergence of the Kähler-Ricci Flow on a Kähler-Einstein Fano Manifold / Vincent Guedj.
Series Title: Lecture notes in mathematics (Springer-Verlag), 2086.
Responsibility: Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, editors.
More information:

Abstract:

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(2)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/859522979>
library:oclcnum"859522979"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:datePublished"2013"
schema:description"This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1333389297>
schema:inLanguage"en"
schema:isPartOf
schema:name"An Introduction to the Kähler-Ricci flow"@en
schema:numberOfPages"333"
schema:publication
schema:publisher
schema:url<http://link.springer.com/book/10.1007/978-3-319-00819-6>
schema:url
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.