přejít na obsah
An Introduction to the Kähler-Ricci flow Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

An Introduction to the Kähler-Ricci flow

Autor Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj
Vydavatel: Cham, Switzerland : Springer, ©2013.
Edice: Lecture notes in mathematics (Springer-Verlag), 2086.
Vydání/formát:   e-kniha : Document : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Žánr/forma: Electronic books
Doplňující formát: Printed edition:
Typ materiálu: Document, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj
ISBN: 9783319008196 3319008196
OCLC číslo: 859522979
Popis: 1 online resource (viii, 333 pages) : illustrations.
Obsahy: Introduction / Sébastien Boucksom and Philippe Eyssidieux --
An Introduction to Fully Nonlinear Parabolic Equations / Cyril Imbert and Luis Silvestre --
An Introduction to the Kähler-Ricci Flow / Jian Song and Ben Weinkove --
Regularizing Properties of the Kähler-Ricci Flow / Sébastien Boucksom and Vincent Guedj --
The Kähler-Ricci Flow on Fano Manifolds / Huai-Dong Cao --
Convergence of the Kähler-Ricci Flow on a Kähler-Einstein Fano Manifold / Vincent Guedj.
Název edice: Lecture notes in mathematics (Springer-Verlag), 2086.
Odpovědnost: Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, editors.
Více informací:

Anotace:

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries.

Recenze

Recenze redakce

Souhrn od vydavatele

"This volume comprises contributions to a series of meetings centered around the Kahler-Ricci flow that took place in Toulouse, Marseille, and Luminy in France, as well as in Marrakech, Morocco in Přečíst více...

 
Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.

Podobné dokumenty

Související předmětová hesla:(2)

Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


Primary Entity

<http://www.worldcat.org/oclc/859522979> # An Introduction to the Kähler-Ricci flow
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "859522979" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1333389297#Place/cham_switzerland> ; # Cham, Switzerland
    schema:about <http://dewey.info/class/515.946/e23/> ;
    schema:about <http://id.worldcat.org/fast/989677> ; # Kählerian structures
    schema:about <http://id.worldcat.org/fast/1200544> ; # Ricci flow
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1333389297#Person/boucksom_sebastien> ; # Sébastien Boucksom
    schema:contributor <http://viaf.org/viaf/256041290> ; # Vincent Guedj
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1333389297#Person/eyssidieux_philippe> ; # Philippe Eyssidieux
    schema:copyrightYear "2013" ;
    schema:datePublished "2013" ;
    schema:description "This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1333389297> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1333389297#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
    schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1333389297#CreativeWork/> ;
    schema:name "An Introduction to the Kähler-Ricci flow"@en ;
    schema:productID "859522979" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/859522979#PublicationEvent/cham_switzerland_springer_2013> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1333389297#Agent/springer> ; # Springer
    schema:url <http://link.springer.com/book/10.1007/978-3-319-00819-6> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-319-00818-9> ;
    schema:url <http://rd.springer.com/openurl?genre=book&isbn=978-3-319-00818-9> ;
    schema:url <http://link.springer.com/openurl?genre=book&isbn=978-3-319-00818-9> ;
    schema:url <http://dx.doi.org/10.1007/978-3-319-00819-6> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3107039> ;
    schema:workExample <http://worldcat.org/isbn/9783319008196> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-319-00819-6> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/859522979> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1333389297#Person/boucksom_sebastien> # Sébastien Boucksom
    a schema:Person ;
    schema:familyName "Boucksom" ;
    schema:givenName "Sébastien" ;
    schema:name "Sébastien Boucksom" ;
    .

<http://experiment.worldcat.org/entity/work/data/1333389297#Person/eyssidieux_philippe> # Philippe Eyssidieux
    a schema:Person ;
    schema:familyName "Eyssidieux" ;
    schema:givenName "Philippe" ;
    schema:name "Philippe Eyssidieux" ;
    .

<http://experiment.worldcat.org/entity/work/data/1333389297#Place/cham_switzerland> # Cham, Switzerland
    a schema:Place ;
    schema:name "Cham, Switzerland" ;
    .

<http://experiment.worldcat.org/entity/work/data/1333389297#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/859522979> ; # An Introduction to the Kähler-Ricci flow
    schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://id.worldcat.org/fast/1200544> # Ricci flow
    a schema:Intangible ;
    schema:name "Ricci flow"@en ;
    .

<http://id.worldcat.org/fast/989677> # Kählerian structures
    a schema:Intangible ;
    schema:name "Kählerian structures"@en ;
    .

<http://viaf.org/viaf/256041290> # Vincent Guedj
    a schema:Person ;
    schema:familyName "Guedj" ;
    schema:givenName "Vincent" ;
    schema:name "Vincent Guedj" ;
    .

<http://worldcat.org/entity/work/data/1333389297#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Printed edition:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/859522979> ; # An Introduction to the Kähler-Ricci flow
    .

<http://worldcat.org/isbn/9783319008196>
    a schema:ProductModel ;
    schema:isbn "3319008196" ;
    schema:isbn "9783319008196" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/859522979> ; # An Introduction to the Kähler-Ricci flow
    schema:issn "1617-9692" ;
    schema:name "Lecture notes in mathematics," ;
    .


Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.