omitir hasta el contenido
An Introduction to the Kähler-Ricci flow Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

An Introduction to the Kähler-Ricci flow

Autor: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; SpringerLink (Online service)
Editorial: Cham, Switzerland : Springer, ©2013.
Serie: Lecture notes in mathematics (Springer-Verlag), 2086.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; SpringerLink (Online service)
ISBN: 9783319008196 3319008196
Número OCLC: 859522979
Descripción: 1 online resource (viii, 333 p.) : ill.
Contenido: Introduction / Sébastien Boucksom and Philippe Eyssidieux --
An Introduction to Fully Nonlinear Parabolic Equations / Cyril Imbert and Luis Silvestre --
An Introduction to the Kähler-Ricci Flow / Jian Song and Ben Weinkove --
Regularizing Properties of the Kähler-Ricci Flow / Sébastien Boucksom and Vincent Guedj --
The Kähler-Ricci Flow on Fano Manifolds / Huai-Dong Cao --
Convergence of the Kähler-Ricci Flow on a Kähler-Einstein Fano Manifold / Vincent Guedj.
Título de la serie: Lecture notes in mathematics (Springer-Verlag), 2086.
Responsabilidad: Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, editors.
Más información:

Resumen:

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Temas relacionados:(2)

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/859522979>
library:oclcnum"859522979"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/859522979>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:datePublished"2013"
schema:description"This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1333389297>
schema:inLanguage"en"
schema:name"An Introduction to the Kähler-Ricci flow"
schema:numberOfPages"333"
schema:publisher
schema:url<http://link.springer.com/book/10.1007/978-3-319-00819-6>
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-319-00819-6>
schema:workExample

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.