aller au contenu
An Introduction to the Kähler-Ricci flow Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

An Introduction to the Kähler-Ricci flow

Auteur : Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; SpringerLink (Online service)
Éditeur : Cham, Switzerland : Springer, ©2013.
Collection : Lecture notes in mathematics (Springer-Verlag), 2086.
Édition/format :   Livre électronique : Document : AnglaisVoir toutes les éditions et les formats
Base de données :WorldCat
Résumé :
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students  Lire la suite...
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire en ligne

Liens vers cet ouvrage

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Type d’ouvrage : Document, Ressource Internet
Format : Ressource Internet, Fichier informatique
Tous les auteurs / collaborateurs : Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; SpringerLink (Online service)
ISBN : 9783319008196 3319008196
Numéro OCLC : 859522979
Description : 1 online resource (viii, 333 p.) : ill.
Contenu : Introduction / Sébastien Boucksom and Philippe Eyssidieux --
An Introduction to Fully Nonlinear Parabolic Equations / Cyril Imbert and Luis Silvestre --
An Introduction to the Kähler-Ricci Flow / Jian Song and Ben Weinkove --
Regularizing Properties of the Kähler-Ricci Flow / Sébastien Boucksom and Vincent Guedj --
The Kähler-Ricci Flow on Fano Manifolds / Huai-Dong Cao --
Convergence of the Kähler-Ricci Flow on a Kähler-Einstein Fano Manifold / Vincent Guedj.
Titre de collection : Lecture notes in mathematics (Springer-Verlag), 2086.
Responsabilité : Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, editors.
Plus d’informations :

Résumé :

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries.

Critiques

Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Soyez le premier.

Ouvrages semblables

Sujets associés :(2)

Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


<http://www.worldcat.org/oclc/859522979>
library:oclcnum"859522979"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
rdf:valueUnknown value: dct
schema:about
schema:about
<http://id.worldcat.org/fast/989677>
rdf:typeschema:Intangible
schema:name"Kählerian structures"@en
schema:name"Kählerian structures."@en
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:datePublished"2013"
schema:description"This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1333389297>
schema:inLanguage"en"
schema:isPartOf
schema:name"An Introduction to the Kähler-Ricci flow"@en
schema:numberOfPages"333"
schema:publication
schema:publisher
schema:url<http://link.springer.com/book/10.1007/978-3-319-00819-6>
schema:url<http://dx.doi.org/10.1007/978-3-319-00819-6>
schema:workExample
wdrs:describedby

Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.