コンテンツへ移動
An Introduction to the Kähler-Ricci flow 資料のプレビュー
閉じる資料のプレビュー
確認中…

An Introduction to the Kähler-Ricci flow

著者: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; SpringerLink (Online service)
出版: Cham, Switzerland : Springer, ©2013.
シリーズ: Lecture notes in mathematics (Springer-Verlag), 2086.
エディション/フォーマット:   電子書籍 : Document : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

資料の種類: Document, インターネット資料
ドキュメントの種類: インターネットリソース, コンピューターファイル
すべての著者/寄与者: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; SpringerLink (Online service)
ISBN: 9783319008196 3319008196
OCLC No.: 859522979
物理形態: 1 online resource (viii, 333 p.) : ill.
コンテンツ: Introduction / Sébastien Boucksom and Philippe Eyssidieux --
An Introduction to Fully Nonlinear Parabolic Equations / Cyril Imbert and Luis Silvestre --
An Introduction to the Kähler-Ricci Flow / Jian Song and Ben Weinkove --
Regularizing Properties of the Kähler-Ricci Flow / Sébastien Boucksom and Vincent Guedj --
The Kähler-Ricci Flow on Fano Manifolds / Huai-Dong Cao --
Convergence of the Kähler-Ricci Flow on a Kähler-Einstein Fano Manifold / Vincent Guedj.
シリーズタイトル: Lecture notes in mathematics (Springer-Verlag), 2086.
責任者: Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, editors.
その他の情報:

概要:

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries.

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!

類似資料

リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/859522979>
library:oclcnum"859522979"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/859522979>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"2013"
schema:datePublished"2013"
schema:description"This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1333389297>
schema:inLanguage"en"
schema:name"An Introduction to the Kähler-Ricci flow"
schema:numberOfPages"333"
schema:publisher
schema:url<http://link.springer.com/book/10.1007/978-3-319-00819-6>
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-319-00819-6>
schema:workExample

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.