컨텐츠로 이동
An Introduction to the Kähler-Ricci flow 해당 항목을 미리보기
닫기해당 항목을 미리보기

An Introduction to the Kähler-Ricci flow

저자: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj
출판사: Cham, Switzerland : Springer, ©2013.
시리즈: Lecture notes in mathematics (Springer-Verlag), 2086.
판/형식:   전자도서 : 문서 : 영어모든 판과 형식 보기
데이터베이스:WorldCat
요약:
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students  더 읽기…
이 항목의 온라인 사본 가지러 가는 중… 이 항목의 온라인 사본 가지러 가는 중…

도서관에서 사본 찾기

해당 항목에 대한 위치와 이용가능성을 보기 해당 항목에 대한 위치와 이용가능성을 보기

WorldCat

전세계 도서관에서 찾기
이 항목을 소유하고 있는 전세계 도서관

상세정보

추가적인 물리적 형식: Printed edition:
자료 유형: 문서, 인터넷 자료
문서 형식: 인터넷 자원, 컴퓨터 파일
모든 저자 / 참여자: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj
ISBN: 9783319008196 3319008196
OCLC 번호: 859522979
설명: 1 online resource (viii, 333 pages) : illustrations.
내용: Introduction / Sébastien Boucksom and Philippe Eyssidieux --
An Introduction to Fully Nonlinear Parabolic Equations / Cyril Imbert and Luis Silvestre --
An Introduction to the Kähler-Ricci Flow / Jian Song and Ben Weinkove --
Regularizing Properties of the Kähler-Ricci Flow / Sébastien Boucksom and Vincent Guedj --
The Kähler-Ricci Flow on Fano Manifolds / Huai-Dong Cao --
Convergence of the Kähler-Ricci Flow on a Kähler-Einstein Fano Manifold / Vincent Guedj.
일련 제목: Lecture notes in mathematics (Springer-Verlag), 2086.
책임: Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, editors.

초록:

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries.
해당 항목에 대한 메모 불러오기 해당 항목에 대한 메모 불러오기

리뷰

편집자의 리뷰

출판사 줄거리

"This volume comprises contributions to a series of meetings centered around the Kahler-Ricci flow that took place in Toulouse, Marseille, and Luminy in France, as well as in Marrakech, Morocco in 더 읽기…

 
사용자-기여 리뷰

태그

첫번째 되기

유사 항목

요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.