pular para conteúdo
An Introduction to the Kähler-Ricci flow Ver prévia deste item
FecharVer prévia deste item
Checando...

An Introduction to the Kähler-Ricci flow

Autor: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj
Editora: Cham, Switzerland : Springer, ©2013.
Séries: Lecture notes in mathematics (Springer-Verlag), 2086.
Edição/Formato   e-book : Documento : InglêsVer todas as edições e formatos
Base de Dados:WorldCat
Resumo:
This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia on-line

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Gênero/Forma: Electronic books
Formato Físico Adicional: Printed edition:
Tipo de Material: Documento, Recurso Internet
Tipo de Documento: Recurso Internet, Arquivo de Computador
Todos os Autores / Contribuintes: Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj
ISBN: 9783319008196 3319008196
Número OCLC: 859522979
Descrição: 1 online resource (viii, 333 pages) : illustrations.
Conteúdos: Introduction / Sébastien Boucksom and Philippe Eyssidieux --
An Introduction to Fully Nonlinear Parabolic Equations / Cyril Imbert and Luis Silvestre --
An Introduction to the Kähler-Ricci Flow / Jian Song and Ben Weinkove --
Regularizing Properties of the Kähler-Ricci Flow / Sébastien Boucksom and Vincent Guedj --
The Kähler-Ricci Flow on Fano Manifolds / Huai-Dong Cao --
Convergence of the Kähler-Ricci Flow on a Kähler-Einstein Fano Manifold / Vincent Guedj.
Título da Série: Lecture notes in mathematics (Springer-Verlag), 2086.
Responsabilidade: Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj, editors.
Mais informações:

Resumo:

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries.

Críticas

Críticas editoriais

Nielsen BookData

"This volume comprises contributions to a series of meetings centered around the Kahler-Ricci flow that took place in Toulouse, Marseille, and Luminy in France, as well as in Marrakech, Morocco in Ler mais...

 
Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.

Ítens Similares

Assuntos Relacionados:(2)

Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


Primary Entity

<http://www.worldcat.org/oclc/859522979> # An Introduction to the Kähler-Ricci flow
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
   library:oclcnum "859522979" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1333389297#Place/cham_switzerland> ; # Cham, Switzerland
   schema:about <http://dewey.info/class/515.946/e23/> ;
   schema:about <http://id.worldcat.org/fast/989677> ; # Kählerian structures
   schema:about <http://id.worldcat.org/fast/1200544> ; # Ricci flow
   schema:bookFormat schema:EBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1333389297#Person/boucksom_sebastien> ; # Sébastien Boucksom
   schema:contributor <http://viaf.org/viaf/256041290> ; # Vincent Guedj
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1333389297#Person/eyssidieux_philippe> ; # Philippe Eyssidieux
   schema:copyrightYear "2013" ;
   schema:datePublished "2013" ;
   schema:description "This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman's celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman's ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman's surgeries."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1333389297> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1333389297#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
   schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
   schema:isSimilarTo <http://worldcat.org/entity/work/data/1333389297#CreativeWork/> ;
   schema:name "An Introduction to the Kähler-Ricci flow"@en ;
   schema:productID "859522979" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/859522979#PublicationEvent/cham_switzerland_springer_2013> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1333389297#Agent/springer> ; # Springer
   schema:url <http://link.springer.com/book/10.1007/978-3-319-00819-6> ;
   schema:url <http://rd.springer.com/openurl?genre=book&isbn=978-3-319-00818-9> ;
   schema:url <http://link.springer.com/openurl?genre=book&isbn=978-3-319-00818-9> ;
   schema:url <http://dx.doi.org/10.1007/978-3-319-00819-6> ;
   schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3107039> ;
   schema:workExample <http://worldcat.org/isbn/9783319008196> ;
   schema:workExample <http://dx.doi.org/10.1007/978-3-319-00819-6> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/859522979> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1333389297#Person/boucksom_sebastien> # Sébastien Boucksom
    a schema:Person ;
   schema:familyName "Boucksom" ;
   schema:givenName "Sébastien" ;
   schema:name "Sébastien Boucksom" ;
    .

<http://experiment.worldcat.org/entity/work/data/1333389297#Person/eyssidieux_philippe> # Philippe Eyssidieux
    a schema:Person ;
   schema:familyName "Eyssidieux" ;
   schema:givenName "Philippe" ;
   schema:name "Philippe Eyssidieux" ;
    .

<http://experiment.worldcat.org/entity/work/data/1333389297#Place/cham_switzerland> # Cham, Switzerland
    a schema:Place ;
   schema:name "Cham, Switzerland" ;
    .

<http://experiment.worldcat.org/entity/work/data/1333389297#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/859522979> ; # An Introduction to the Kähler-Ricci flow
   schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://id.worldcat.org/fast/1200544> # Ricci flow
    a schema:Intangible ;
   schema:name "Ricci flow"@en ;
    .

<http://id.worldcat.org/fast/989677> # Kählerian structures
    a schema:Intangible ;
   schema:name "Kählerian structures"@en ;
    .

<http://viaf.org/viaf/256041290> # Vincent Guedj
    a schema:Person ;
   schema:familyName "Guedj" ;
   schema:givenName "Vincent" ;
   schema:name "Vincent Guedj" ;
    .

<http://worldcat.org/entity/work/data/1333389297#CreativeWork/>
    a schema:CreativeWork ;
   schema:description "Printed edition:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/859522979> ; # An Introduction to the Kähler-Ricci flow
    .

<http://worldcat.org/isbn/9783319008196>
    a schema:ProductModel ;
   schema:isbn "3319008196" ;
   schema:isbn "9783319008196" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/859522979> ; # An Introduction to the Kähler-Ricci flow
   schema:issn "1617-9692" ;
   schema:name "Lecture notes in mathematics," ;
    .


Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.