skip to content
Introduction to Time Series and Forecasting Preview this item
ClosePreview this item
Checking...

Introduction to Time Series and Forecasting

Author: Peter J Brockwell; Richard A Davis
Publisher: New York, NY : Springer New York, 1996.
Series: Springer texts in statistics.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises,  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Peter J Brockwell; Richard A Davis
ISBN: 9781475725261 1475725264
OCLC Number: 851790163
Description: 1 online resource (xiii, 422 pages).
Contents: 1. Introduction --
2. Stationary Processes --
3. ARMA Models --
4. Spectral Analysis --
5. Modelling and Forecasting with ARMA Processes --
6. Nonstationary and Seasonal Time Series Models --
7. Multivariate Time Series --
8. State-Space Models --
9. Forecasting Techniques --
10. Further Topics --
A. Random Variables and Probability Distributions --
A.1. Distribution Functions and Expectation --
A.2. Random Vectors --
A.3. The Multivariate Normal Distribution --
Problems --
B. Statistical Complements --
B.1. Least Squares Estimation --
B.1.1. The Gauss-Markov Theorem --
B.1.2. Generalized Least Squares --
B.2. Maximum Likelihood Estimation --
B.2.1. Properties of Maximum Likelihood Estimators --
B.3. Confidence Intervals --
B.3.1. Large-Sample Confidence Regions --
B.4. Hypothesis Testing --
B.4.1. Error Probabilities --
B.4.2. Large-Sample Tests Based on Confidence Regions --
C. Mean Square Convergence --
C.1. The Cauchy Criterion --
D. An ITSM Tutorial --
D.1. Getting Started --
D.1.1. Running PEST --
D.2. Preparing Your Data for Modelling --
D.2.1. Entering Data --
D.2.2. Filing Data --
D.2.3. Plotting Data --
D.2.4. Transforming Data --
D.3. Finding a Model for Your Data --
D.3.1. The Sample ACF and PACF --
D.3.2. Entering a Model --
D.3.3. Preliminary Estimation --
D.3.4. The AICC Statistic --
D.3.5. Changing Your Model --
D.3.6. Maximum Likelihood Estimation --
D.3.7. Optimization Results --
D.4. Testing Your Model --
D.4.1. Plotting the Residuals --
D.4.2. ACF/PACF of the Residuals --
D.4.3. Testing for Randomness of the Residuals --
D.5. Prediction --
D.5.1. Forecast Criteria --
D.5.2. Forecast Results --
D.5.3. Inverting Transformations --
D.6. Model Properties --
D.6.1. ARMA Models --
D.6.2. Model ACF, PACF --
D.6.3. Model Representations --
D.6.4. Generating Realizations of a Random Series --
D.6.5. Spectral Properties.
Series Title: Springer texts in statistics.
Other Titles: Student/Windows Version
Responsibility: by Peter J. Brockwell, Richard A. Davis.

Abstract:

Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/851790163> # Introduction to Time Series and Forecasting
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
   library:oclcnum "851790163" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/15339752#Place/new_york_ny> ; # New York, NY
   schema:about <http://id.worldcat.org/fast/1012127> ; # Mathematical statistics
   schema:about <http://id.worldcat.org/fast/1132103> ; # Statistics
   schema:about <http://dewey.info/class/519.5/e23/> ;
   schema:about <http://id.worldcat.org/fast/895600> ; # Distribution (Probability theory)
   schema:alternateName "Student/Windows Version" ;
   schema:bookFormat schema:EBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/15339752#Person/davis_richard_a> ; # Richard A. Davis
   schema:creator <http://experiment.worldcat.org/entity/work/data/15339752#Person/brockwell_peter_j> ; # Peter J. Brockwell
   schema:datePublished "1996" ;
   schema:description "Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis."@en ;
   schema:description "1. Introduction -- 2. Stationary Processes -- 3. ARMA Models -- 4. Spectral Analysis -- 5. Modelling and Forecasting with ARMA Processes -- 6. Nonstationary and Seasonal Time Series Models -- 7. Multivariate Time Series -- 8. State-Space Models -- 9. Forecasting Techniques -- 10. Further Topics -- A. Random Variables and Probability Distributions -- A.1. Distribution Functions and Expectation -- A.2. Random Vectors -- A.3. The Multivariate Normal Distribution -- Problems -- B. Statistical Complements -- B.1. Least Squares Estimation -- B.1.1. The Gauss-Markov Theorem -- B.1.2. Generalized Least Squares -- B.2. Maximum Likelihood Estimation -- B.2.1. Properties of Maximum Likelihood Estimators -- B.3. Confidence Intervals -- B.3.1. Large-Sample Confidence Regions -- B.4. Hypothesis Testing -- B.4.1. Error Probabilities -- B.4.2. Large-Sample Tests Based on Confidence Regions -- C. Mean Square Convergence -- C.1. The Cauchy Criterion -- D. An ITSM Tutorial -- D.1. Getting Started -- D.1.1. Running PEST -- D.2. Preparing Your Data for Modelling -- D.2.1. Entering Data -- D.2.2. Filing Data -- D.2.3. Plotting Data -- D.2.4. Transforming Data -- D.3. Finding a Model for Your Data -- D.3.1. The Sample ACF and PACF -- D.3.2. Entering a Model -- D.3.3. Preliminary Estimation -- D.3.4. The AICC Statistic -- D.3.5. Changing Your Model -- D.3.6. Maximum Likelihood Estimation -- D.3.7. Optimization Results -- D.4. Testing Your Model -- D.4.1. Plotting the Residuals -- D.4.2. ACF/PACF of the Residuals -- D.4.3. Testing for Randomness of the Residuals -- D.5. Prediction -- D.5.1. Forecast Criteria -- D.5.2. Forecast Results -- D.5.3. Inverting Transformations -- D.6. Model Properties -- D.6.1. ARMA Models -- D.6.2. Model ACF, PACF -- D.6.3. Model Representations -- D.6.4. Generating Realizations of a Random Series -- D.6.5. Spectral Properties."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/15339752> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://worldcat.org/issn/1431-875X> ; # Springer Texts in Statistics,
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/15339752#Series/springer_texts_in_statistics> ; # Springer texts in statistics.
   schema:isSimilarTo <http://worldcat.org/entity/work/data/15339752#CreativeWork/> ;
   schema:name "Introduction to Time Series and Forecasting"@en ;
   schema:productID "851790163" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/851790163#PublicationEvent/new_york_ny_springer_new_york_1996> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/15339752#Agent/springer_new_york> ; # Springer New York
   schema:url <http://dx.doi.org/10.1007/978-1-4757-2526-1> ;
   schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3085222> ;
   schema:url <http://link.springer.com/10.1007/978-1-4757-2526-1> ;
   schema:workExample <http://worldcat.org/isbn/9781475725261> ;
   schema:workExample <http://dx.doi.org/10.1007/978-1-4757-2526-1> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/851790163> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/15339752#Agent/springer_new_york> # Springer New York
    a bgn:Agent ;
   schema:name "Springer New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/15339752#Person/brockwell_peter_j> # Peter J. Brockwell
    a schema:Person ;
   schema:familyName "Brockwell" ;
   schema:givenName "Peter J." ;
   schema:name "Peter J. Brockwell" ;
    .

<http://experiment.worldcat.org/entity/work/data/15339752#Person/davis_richard_a> # Richard A. Davis
    a schema:Person ;
   schema:familyName "Davis" ;
   schema:givenName "Richard A." ;
   schema:name "Richard A. Davis" ;
    .

<http://experiment.worldcat.org/entity/work/data/15339752#Series/springer_texts_in_statistics> # Springer texts in statistics.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/851790163> ; # Introduction to Time Series and Forecasting
   schema:name "Springer texts in statistics." ;
    .

<http://id.worldcat.org/fast/1012127> # Mathematical statistics
    a schema:Intangible ;
   schema:name "Mathematical statistics"@en ;
    .

<http://id.worldcat.org/fast/1132103> # Statistics
    a schema:Intangible ;
   schema:name "Statistics"@en ;
    .

<http://id.worldcat.org/fast/895600> # Distribution (Probability theory)
    a schema:Intangible ;
   schema:name "Distribution (Probability theory)"@en ;
    .

<http://link.springer.com/10.1007/978-1-4757-2526-1>
   rdfs:comment "from Springer" ;
   rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://worldcat.org/entity/work/data/15339752#CreativeWork/>
    a schema:CreativeWork ;
   schema:description "Print version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/851790163> ; # Introduction to Time Series and Forecasting
    .

<http://worldcat.org/isbn/9781475725261>
    a schema:ProductModel ;
   schema:isbn "1475725264" ;
   schema:isbn "9781475725261" ;
    .

<http://worldcat.org/issn/1431-875X> # Springer Texts in Statistics,
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/851790163> ; # Introduction to Time Series and Forecasting
   schema:issn "1431-875X" ;
   schema:name "Springer Texts in Statistics," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.