skip to content
An irregular mind : Szemerédi is 70 Preview this item
ClosePreview this item
Checking...

An irregular mind : Szemerédi is 70

Author: E Szemerédi; Imre Bárány; Jozsef Solymosi; Bolyai János Matematikai Társulat.
Publisher: Berlin : Springer ; Budapest : János Bolyai Mathematical Society, 2010.
Series: Bolyai Society mathematical studies, 21.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:

Endre Szemeredi's influence on today's mathematics, especially in combinatorics, additive number theory, and theoretical computer science, is enormous. This volume is a celebration of his  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Bibliography
Additional Physical Format: Print version:
Irregular mind.
Berlin : Springer ; Budapest : János Bolyai Mathematical Society, 2010
(OCoLC)646114207
Named Person: E Szemerédi
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: E Szemerédi; Imre Bárány; Jozsef Solymosi; Bolyai János Matematikai Társulat.
ISBN: 9783642144448 3642144446
OCLC Number: 710812495
Description: 1 online resource (758 p.) : ill.
Contents: Cover13; --
Table of Contents --
Foreword --
List Of Publications Of Endre Szemeredi --
Universality, Tolerance, Chaos And Order --
1. Introduction --
2. The Strong Chromatic Number And Universal Graphs --
3. Random Universal Fault Tolerant Graphs --
4. Universal Graphs And Products Of Expanders --
4.1. A Graph-Decomposition Result --
4.2. A Sketch of the Universality of Gk, N --
5. A Ramsey Type Problem --
6. Balanced Homomorphisms And Subgraph Containment Problems --
7. Concluding Remarks And Open Problems --
References --
Super-Uniformity Of The Typical Billiard Path --
1. What Is Super-Uniformity? --
1. Introduction. --
2. Super-Uniformity of the Typical Billiard Path in the Unit Square. --
2. Can We Beat The Monte Carlo Method? (I) --
3. Can We Beat The Monte Carlo Method? (II) --
1. Regular Sampling Is Adaptive. --
2. A Surprising Way to "Beat" the Monte Carlo Method: Switching From Point Samples to Curves, Surfaces, and So on. --
3. Summary. --
4. Super-Uniformity: Proof Of Theorem 1 --
5. Proof Of Theorem 2 --
6. Proof Of Theorem 3 --
7. Proof Of Theorem 4 --
8. Proof Of Proposition 1.1 --
9. Proof Of Proposition 2.1 --
10. Proof Of Proposition 2.2 --
11. Proof Of Proposition 3.1 --
12. More On Super-Uniformity: Proof Of Theorem 5 --
References --
Percolation On Self-Dual Polygon Configurations --
1. Introduction --
2. The Model And Results --
3. A Generalization Of Harris'S Lemma --
3.1. High Probability Unions of Upsets --
4. Colourings, Hypergraphs And Crossings --
4.1. How Crossing Probabilities Vary --
5. A Rectangle-Crossing Lemma --
5.1. Bond Percolation on 7I} --
5.2. A Rectangle-Crossing Lemma for Hyperlattices --
5.3. A Stronger Rectangle-Crossing Lemma --
6. Self-Duality And Rectangle Crossings --
7. From Rectangle Crossings To Percolation --
8. On The Critical Surface --
References --
On Exponential Sums In Finite Fields --
O. Introduction --
1. A Sum-Product Property --
2. Preliminary Estimates (1) --
3. Preliminary Estimates (2) --
4. Further Assumptions --
5. Preliminary Estimates (3) --
6. Estimation Of Trilinear Sums --
7. Convolution Of Product Densities --
8. The General Case --
References --
An Estimate Of Incomplete Mixed Character Sums --
Notation And Convention --
References --
Crossings Between Curves With Many Tangencies --
1. Introduction --
2. Levels --
Proof Of Theorem 1 --
3. Constructive Upper Bound --
Proof Of Theorem 2 --
4. Concluding Remarks --
References --
An Arithmetic Regularity Lemma, An Associated Counting Lemma, And Applications --
1. Introduction --
2. Proof Of The Arithmetic Regularity Lemma --
3. Proof Of The Counting Lemma --
4. Generalised Von Neumann Type Theorems --
5. On A Conjecture Of Bergelson, Host, And Kra --
6. Proof Of Szemeredi'S Theorem --
Appendix A. Properties Of Polynomial Sequences --
Appendix B.A Multiparameter Equidistribution Result --
Appendix C. The Baker-Campbell-Hausdorff Formula --
References --
Yet Another Proof Of Szemeredi's Theorem --
1. I Ntroduction --
2. Nilsequenc.
Series Title: Bolyai Society mathematical studies, 21.
Responsibility: Imre Bárány, József Solymosi (eds.).
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/710812495>
library:oclcnum"710812495"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/710812495>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:datePublished"2010"
schema:description"Cover13; -- Table of Contents -- Foreword -- List Of Publications Of Endre Szemeredi -- Universality, Tolerance, Chaos And Order -- 1. Introduction -- 2. The Strong Chromatic Number And Universal Graphs -- 3. Random Universal Fault Tolerant Graphs -- 4. Universal Graphs And Products Of Expanders -- 4.1. A Graph-Decomposition Result -- 4.2. A Sketch of the Universality of Gk, N -- 5. A Ramsey Type Problem -- 6. Balanced Homomorphisms And Subgraph Containment Problems -- 7. Concluding Remarks And Open Problems -- References -- Super-Uniformity Of The Typical Billiard Path -- 1. What Is Super-Uniformity? -- 1. Introduction. -- 2. Super-Uniformity of the Typical Billiard Path in the Unit Square. -- 2. Can We Beat The Monte Carlo Method? (I) -- 3. Can We Beat The Monte Carlo Method? (II) -- 1. Regular Sampling Is Adaptive. -- 2. A Surprising Way to "Beat" the Monte Carlo Method: Switching From Point Samples to Curves, Surfaces, and So on. -- 3. Summary. -- 4. Super-Uniformity: Proof Of Theorem 1 -- 5. Proof Of Theorem 2 -- 6. Proof Of Theorem 3 -- 7. Proof Of Theorem 4 -- 8. Proof Of Proposition 1.1 -- 9. Proof Of Proposition 2.1 -- 10. Proof Of Proposition 2.2 -- 11. Proof Of Proposition 3.1 -- 12. More On Super-Uniformity: Proof Of Theorem 5 -- References -- Percolation On Self-Dual Polygon Configurations -- 1. Introduction -- 2. The Model And Results -- 3. A Generalization Of Harris'S Lemma -- 3.1. High Probability Unions of Upsets -- 4. Colourings, Hypergraphs And Crossings -- 4.1. How Crossing Probabilities Vary -- 5. A Rectangle-Crossing Lemma -- 5.1. Bond Percolation on 7I} -- 5.2. A Rectangle-Crossing Lemma for Hyperlattices -- 5.3. A Stronger Rectangle-Crossing Lemma -- 6. Self-Duality And Rectangle Crossings -- 7. From Rectangle Crossings To Percolation -- 8. On The Critical Surface -- References -- On Exponential Sums In Finite Fields -- O. Introduction -- 1. A Sum-Product Property -- 2. Preliminary Estimates (1) -- 3. Preliminary Estimates (2) -- 4. Further Assumptions -- 5. Preliminary Estimates (3) -- 6. Estimation Of Trilinear Sums -- 7. Convolution Of Product Densities -- 8. The General Case -- References -- An Estimate Of Incomplete Mixed Character Sums -- Notation And Convention -- References -- Crossings Between Curves With Many Tangencies -- 1. Introduction -- 2. Levels -- Proof Of Theorem 1 -- 3. Constructive Upper Bound -- Proof Of Theorem 2 -- 4. Concluding Remarks -- References -- An Arithmetic Regularity Lemma, An Associated Counting Lemma, And Applications -- 1. Introduction -- 2. Proof Of The Arithmetic Regularity Lemma -- 3. Proof Of The Counting Lemma -- 4. Generalised Von Neumann Type Theorems -- 5. On A Conjecture Of Bergelson, Host, And Kra -- 6. Proof Of Szemeredi'S Theorem -- Appendix A. Properties Of Polynomial Sequences -- Appendix B.A Multiparameter Equidistribution Result -- Appendix C. The Baker-Campbell-Hausdorff Formula -- References -- Yet Another Proof Of Szemeredi's Theorem -- 1. I Ntroduction -- 2. Nilsequenc."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1089539903>
schema:genre"Bibliography"@en
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"An irregular mind Szemerédi is 70"@en
schema:publisher
schema:publisher
schema:url<http://www.myilibrary.com?id=307627>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374201>
schema:url<http://dx.doi.org/10.1007/978-3-642-14444-8>
schema:url<http://site.ebrary.com/id/10447890>
schema:url<http://www.myilibrary.com?id=307627&ref=toc>
schema:url
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.