skip to content
Iterative Regularization Methods for Nonlinear Ill-posed Problems. Preview this item
ClosePreview this item
Checking...

Iterative Regularization Methods for Nonlinear Ill-posed Problems.

Author: Barbara Kaltenbacher; Andreas Neubauer; Otmar Scherzer
Publisher: Berlin : Walter de Gruyter, 2008.
Series: Radon Series on Computational and Applied Mathematics, v. 6.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Barbara Kaltenbacher; Andreas Neubauer; Otmar Scherzer
ISBN: 9783110208276 311020827X
OCLC Number: 476197162
Description: 1 online resource (204 pages).
Contents: Frontmatter --
Contents --
1 Introduction --
2 Nonlinear Landweber iteration --
3 Modified Landweber methods --
4 Newton type methods --
5 Multilevel methods --
6 Level set methods --
7 Applications --
8 Comments --
Backmatter
Series Title: Radon Series on Computational and Applied Mathematics, v. 6.
More information:

Abstract:

This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods.  Read more...

Reviews

Editorial reviews

Publisher Synopsis

"This well written monograph may become a standard reference on regularization theory for nonlinear inverse problems."Thorsten Hohage in: Mathematical Reviews 2010c "This well written monograph may Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/476197162> # Iterative Regularization Methods for Nonlinear Ill-posed Problems.
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "476197162" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/141887942#Place/berlin> ; # Berlin
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://dewey.info/class/515.7/> ;
    schema:about <http://id.worldcat.org/fast/980827> ; # Iterative methods (Mathematics)
    schema:about <http://id.loc.gov/authorities/subjects/sh85037914> ; # Differential equations, Partial--Improperly posed problems
    schema:about <http://id.worldcat.org/fast/893487> ; # Differential equations, Partial--Improperly posed problems
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/141887942#Person/scherzer_otmar> ; # Otmar Scherzer
    schema:contributor <http://experiment.worldcat.org/entity/work/data/141887942#Person/neubauer_andreas> ; # Andreas Neubauer
    schema:creator <http://experiment.worldcat.org/entity/work/data/141887942#Person/kaltenbacher_barbara> ; # Barbara Kaltenbacher
    schema:datePublished "2008" ;
    schema:description "Nonlinear inverse problems appear in many applications, and typically they lead to mathematical models that are ill-posed, i.e., they are unstable under data perturbations. Those problems require a regularization, i.e., a special numerical treatment. This book presents regularization schemes which are based on iteration methods, e.g., nonlinear Landweber iteration, level set methods, multilevel methods and Newton type methods."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/141887942> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/141887942#Series/radon_series_on_computational_and_applied_mathematics_v_6> ; # Radon Series on Computational and Applied Mathematics, v. 6.
    schema:isSimilarTo <http://worldcat.org/entity/work/data/141887942#CreativeWork/> ;
    schema:name "Iterative Regularization Methods for Nonlinear Ill-posed Problems."@en ;
    schema:productID "476197162" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/476197162#PublicationEvent/berlin_walter_de_gruyter_2008> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/141887942#Agent/walter_de_gruyter> ; # Walter de Gruyter
    schema:url <http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=364695> ;
    schema:url <http://ebookcentral.proquest.com/lib/columbia/detail.action?docID=364695> ;
    schema:url <http://www.myilibrary.com?id=219699&ref=toc> ;
    schema:url <https://doi.org/10.1515/9783110208276> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247541> ;
    schema:url <http://www.myilibrary.com?id=219699> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=364695> ;
    schema:workExample <http://worldcat.org/isbn/9783110208276> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/476197162> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/141887942#Agent/walter_de_gruyter> # Walter de Gruyter
    a bgn:Agent ;
    schema:name "Walter de Gruyter" ;
    .

<http://experiment.worldcat.org/entity/work/data/141887942#Person/kaltenbacher_barbara> # Barbara Kaltenbacher
    a schema:Person ;
    schema:familyName "Kaltenbacher" ;
    schema:givenName "Barbara" ;
    schema:name "Barbara Kaltenbacher" ;
    .

<http://experiment.worldcat.org/entity/work/data/141887942#Person/neubauer_andreas> # Andreas Neubauer
    a schema:Person ;
    schema:familyName "Neubauer" ;
    schema:givenName "Andreas" ;
    schema:name "Andreas Neubauer" ;
    .

<http://experiment.worldcat.org/entity/work/data/141887942#Person/scherzer_otmar> # Otmar Scherzer
    a schema:Person ;
    schema:familyName "Scherzer" ;
    schema:givenName "Otmar" ;
    schema:name "Otmar Scherzer" ;
    .

<http://experiment.worldcat.org/entity/work/data/141887942#Series/radon_series_on_computational_and_applied_mathematics_v_6> # Radon Series on Computational and Applied Mathematics, v. 6.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/476197162> ; # Iterative Regularization Methods for Nonlinear Ill-posed Problems.
    schema:name "Radon Series on Computational and Applied Mathematics, v. 6." ;
    schema:name "Radon Series on Computational and Applied Mathematics, v. 6" ;
    .

<http://id.loc.gov/authorities/subjects/sh85037914> # Differential equations, Partial--Improperly posed problems
    a schema:Intangible ;
    schema:name "Differential equations, Partial--Improperly posed problems"@en ;
    .

<http://id.worldcat.org/fast/893487> # Differential equations, Partial--Improperly posed problems
    a schema:Intangible ;
    schema:name "Differential equations, Partial--Improperly posed problems"@en ;
    .

<http://id.worldcat.org/fast/980827> # Iterative methods (Mathematics)
    a schema:Intangible ;
    schema:name "Iterative methods (Mathematics)"@en ;
    .

<http://worldcat.org/entity/work/data/141887942#CreativeWork/>
    a schema:CreativeWork ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/476197162> ; # Iterative Regularization Methods for Nonlinear Ill-posed Problems.
    .

<http://worldcat.org/isbn/9783110208276>
    a schema:ProductModel ;
    schema:isbn "311020827X" ;
    schema:isbn "9783110208276" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.