## Find a copy online

### Links to this item

## Find a copy in the library

Finding libraries that hold this item...

## Details

Genre/Form: | Electronic books |
---|---|

Additional Physical Format: | Print version: Gallardo-Alvarado, Jaime. Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory. Cham : Springer International Publishing, ©2016 |

Material Type: | Document, Internet resource |

Document Type: | Internet Resource, Computer File |

All Authors / Contributors: |
Jaime Gallardo-Alvarado |

ISBN: | 9783319311265 3319311263 |

OCLC Number: | 952247905 |

Notes: | 14.2 Description of the Delta Robot. |

Description: | 1 online resource (389 pages) |

Contents: | Intro; Preface; Acknowledgments; Contents; List of Tables; List of Figures; Part I General Introduction; Part II Fundamentals of the Theory of Screws; Part III Higher-Order Kinematic Analyses of Rigid Body; Part IV Kinematics of Parallel Manipulators by Means of Screw Theory Exemplified; Part V Emblematic Parallel Manipulators; Part VI Solved Exercises; Index; 1 An Overview of the Theory of Screws; 2 An Overview of Parallel Manipulators; 3 Mathematical Background; 4 Velocity Analysis; 5 Acceleration Analysis; 6 Jerk Analysis; 7 Hyper-Jerk Analysis; 8 3R2T Parallel Manipulator. 9 Two-Degree-of-Freedom Parallel Wrist10 3-RRPS Parallel Manipulator; 11 3RRRS+3RRPS Parallel Manipulator; 12 Gough's Tyre Testing Machine; 13 The Original Stewart Platform; 14 Delta Robot; 15 Full Answers to Selected Exercises; 16 Appendix 1: A Simple Method to Compute the Rotation Matrix; 17 Appendix 2: Computer Codes; 1.1 The Theory of Screws: Historical Contributions; 1.2 Notable Scientists in Screw Theory; References; 2.1 Typical Parallel Manipulators; References; 3.1 Introduction; 3.2 Preamble; 3.3 The Lie Algebra se(3) of the Euclidean Group SE(3); 3.4 Helicoidal Vector Fields. 3.5 ExercisesReferences; 4.1 Introduction; 4.2 Fundamental Equations of Velocity; 4.3 Equations of Velocity in Screw Form; 4.4 Exercises; References; 5.1 Introduction; 5.2 Fundamental Equations of Acceleration; 5.3 Equations of Acceleration in Screw Form; 5.4 Exercises; References; 6.1 Introduction; 6.2 Fundamental Jerk Equations; 6.3 Jerk Equations in Screw Form; 6.4 Exercises; References; 7.1 Introduction; 7.2 Fundamental Hyper-Jerk Equations; 7.3 Hyper-Jerk Equations in Screw Form; 7.4 Exercises; References; 8.1 Introduction; 8.2 Description of the 3R2T Parallel Manipulator. 8.3 Finite Kinematics of the 3R2T Robot8.4 Infinitesimal Kinematics of the 3R2T Robot; 8.5 Exercises; References; 9.1 Introduction; 9.2 Description of the Parallel Wrist; 9.3 Finite Kinematics of the Parallel Wrist; 9.4 Infinitesimal Kinematics of the Parallel Wrist; 9.5 Exercises; References; 10.1 Introduction; 10.2 Description of the 3-RRPS Parallel Manipulator; 10.3 Finite Kinematics of the 3-RRPS Manipulator; 10.4 Infinitesimal Kinematics of the 3-RRPS Manipulator; 10.5 Exercises; References; 11.1 Introduction; 11.2 Description of the 3RRRS+3RRPS Parallel Manipulator. 11.3 Finite Kinematics of the 3RRRS+3RRPS Parallel Manipulator11.4 Infinitesimal Kinematics of the 3RRRS+3RRPS Parallel Manipulator; 11.5 Exercises; References; 12.1 Introduction; 12.2 Description of the General Parallel Manipulator; 12.3 Finite Kinematics of the General Hexapod; 12.4 Infinitesimal Kinematics of the Six-Legged Parallel Manipulator; 12.5 Exercises; References; 13.1 Introduction; 13.2 Description of the Stewart Platform; 13.3 Finite Kinematics of the Stewart Platform; 13.4 Infinitesimal Kinematics of the Stewart Platform; 13.5 Exercises; References; 14.1 Introduction. |

### Abstract:

This book reviews the fundamentals of screw theory concerned with velocity analysis of rigid-bodies, confirmed with detailed and explicit proofs.
Read more...

## Reviews

*User-contributed reviews*

Add a review and share your thoughts with other readers.
Be the first.

Add a review and share your thoughts with other readers.
Be the first.

## Tags

Add tags for "Kinematic Analysis of Parallel Manipulators by Algebraic Screw Theory.".
Be the first.