aller au contenu
Learning and inference in computational systems biology Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

Learning and inference in computational systems biology

Auteur : Neil Lawrence
Éditeur : Cambridge, Mass. : MIT Press, ©2010.
Collection : Computational molecular biology.
Édition/format :   Print book : AnglaisVoir toutes les éditions et tous les formats
Base de données :WorldCat
Résumé :

Tools and techniques for biological inference problems at scales ranging from genome-wide to pathway-specific.

Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Format – détails additionnels : Online version:
Learning and inference in computational systems biology.
Cambridge, Mass. : MIT Press, ©2010
(OCoLC)762146856
Format : Livre
Tous les auteurs / collaborateurs : Neil Lawrence
ISBN : 9780262013864 026201386X
Numéro OCLC : 416139763
Description : viii, 362 pages : illustrations ; 24 cm.
Contenu : Introduction / Neil D. Lawrence --
Reverse engineering of gene regulatory networks / Johannes Jaeger and Nicholas A.M. Monk --
Framework for comparative assessment of parameter estimation and inference methods in systems biology / Pedro Mendes --
Estimation of parametric nonlinear ODEs for biological networks identification / Florence d'Alché-Buc, Nicholas Brunel --
A brief introduction to Bayesian inference / Neil D. Lawrence, Magnus Rattray --
Inferring transcriptional networks using prior biological knowledge and constrained state-space models / John Angus [and others] --
Mixtures of factor analyzers for modeling transcriptional regulation / Kuang Lin, and Dirk Husmeier --
System identification and model ranking: the Bayesian perspective / Mark Girolami, Ben Calderhead and Vladislav Vyshemirsky --
Gaussian processes for missing species in biochemical systems / Neil D. Lawrence [and others] --
Markov chain Monte Carlo algorithms for SDE parameter estimation / Darren J. Wilkinson and Andrew Golightly --
Approximate inference for stochastic reaction processes / Andreas Ruttor, Guido Sanguinetti, and Manfred Opper --
Toward the inference of stochastic biochemical network and parameterized grammar models / Guy Yosiphon and Eric Mjolsness.
Titre de collection : Computational molecular biology.
Responsabilité : edited by Neil D. Lawrence [and others].

Critiques

Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Soyez le premier.
Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


Primary Entity

<http://www.worldcat.org/oclc/416139763> # Learning and inference in computational systems biology
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "416139763" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/773986509#Place/cambridge_mass> ; # Cambridge, Mass.
   schema:about <http://id.loc.gov/authorities/subjects/sh85079324> ; # Machine learning
   schema:about <http://dewey.info/class/570.285/e22/> ;
   schema:about <http://id.worldcat.org/fast/972355> ; # Inference
   schema:about <http://id.worldcat.org/fast/1004795> ; # Machine learning
   schema:about <http://experiment.worldcat.org/entity/work/data/773986509#Topic/bayes_theorem> ; # Bayes Theorem
   schema:about <http://experiment.worldcat.org/entity/work/data/773986509#Topic/systems_biology> ; # Systems Biology
   schema:about <http://id.loc.gov/authorities/subjects/sh85066082> ; # Inference
   schema:about <http://experiment.worldcat.org/entity/work/data/773986509#Topic/bioinformatics_statistical_methods> ; # Bioinformatics--Statistical methods
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://viaf.org/viaf/48747101> ; # Neil D. Lawrence
   schema:copyrightYear "2010" ;
   schema:datePublished "2010" ;
   schema:description "Introduction / Neil D. Lawrence -- Reverse engineering of gene regulatory networks / Johannes Jaeger and Nicholas A.M. Monk -- Framework for comparative assessment of parameter estimation and inference methods in systems biology / Pedro Mendes -- Estimation of parametric nonlinear ODEs for biological networks identification / Florence d'Alché-Buc, Nicholas Brunel -- A brief introduction to Bayesian inference / Neil D. Lawrence, Magnus Rattray -- Inferring transcriptional networks using prior biological knowledge and constrained state-space models / John Angus [and others] -- Mixtures of factor analyzers for modeling transcriptional regulation / Kuang Lin, and Dirk Husmeier -- System identification and model ranking: the Bayesian perspective / Mark Girolami, Ben Calderhead and Vladislav Vyshemirsky -- Gaussian processes for missing species in biochemical systems / Neil D. Lawrence [and others] -- Markov chain Monte Carlo algorithms for SDE parameter estimation / Darren J. Wilkinson and Andrew Golightly -- Approximate inference for stochastic reaction processes / Andreas Ruttor, Guido Sanguinetti, and Manfred Opper -- Toward the inference of stochastic biochemical network and parameterized grammar models / Guy Yosiphon and Eric Mjolsness."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/773986509> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/773986509#Series/computational_molecular_biology> ; # Computational molecular biology.
   schema:isSimilarTo <http://www.worldcat.org/oclc/762146856> ;
   schema:name "Learning and inference in computational systems biology"@en ;
   schema:productID "416139763" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/416139763#PublicationEvent/cambridge_mass_mit_press_2010> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/773986509#Agent/mit_press> ; # MIT Press
   schema:workExample <http://worldcat.org/isbn/9780262013864> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB022978> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/416139763> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/773986509#Place/cambridge_mass> # Cambridge, Mass.
    a schema:Place ;
   schema:name "Cambridge, Mass." ;
    .

<http://experiment.worldcat.org/entity/work/data/773986509#Series/computational_molecular_biology> # Computational molecular biology.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/416139763> ; # Learning and inference in computational systems biology
   schema:name "Computational molecular biology." ;
   schema:name "Computational molecular biology" ;
    .

<http://id.loc.gov/authorities/subjects/sh85066082> # Inference
    a schema:Intangible ;
   schema:name "Inference"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85079324> # Machine learning
    a schema:Intangible ;
   schema:name "Machine learning"@en ;
    .

<http://id.worldcat.org/fast/1004795> # Machine learning
    a schema:Intangible ;
   schema:name "Machine learning"@en ;
    .

<http://id.worldcat.org/fast/972355> # Inference
    a schema:Intangible ;
   schema:name "Inference"@en ;
    .

<http://viaf.org/viaf/48747101> # Neil D. Lawrence
    a schema:Person ;
   schema:familyName "Lawrence" ;
   schema:givenName "Neil D." ;
   schema:givenName "Neil" ;
   schema:name "Neil D. Lawrence" ;
    .

<http://worldcat.org/isbn/9780262013864>
    a schema:ProductModel ;
   schema:isbn "026201386X" ;
   schema:isbn "9780262013864" ;
    .

<http://www.worldcat.org/oclc/762146856>
    a schema:CreativeWork ;
   rdfs:label "Learning and inference in computational systems biology." ;
   schema:description "Online version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/416139763> ; # Learning and inference in computational systems biology
    .


Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.