skip to content
Lectures on algebraic topology Preview this item
ClosePreview this item

Lectures on algebraic topology

Author: Albrecht Dold
Publisher: Berlin : Springer-Verlag, 1995.
Series: Classics in mathematics
Edition/Format:   Print book : English : 2nd edView all editions and formats

Suitable for younger generations of students and researchers, this title deals with higher mathematics.


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Albrecht Dold
ISBN: 3540586601 9783540586609
OCLC Number: 468815757
Notes: Précédemment paru dans la collection : "Grundlehren der mathematischen Wissenschaften", vol. 200, 1980.
Bibliogr. p. 368-370. Index.
Description: XI-377 p. : ill. ; 24 cm.
Contents: I Preliminaries on Categories, Abelian Groups, and Homotopy.- x1 Categories and Functors.- x2 Abelian Groups (Exactness, Direct Sums, Free Abelian Groups).- x3 Homotopy.- II Homology of Complexes.- x1 Complexes.- x2 Connecting Homomorphism, Exact Homology Sequence.- x3 Chain-Homotopy.- x4 Free Complexes.- III Singular Homology.- x1 Standard Simplices and Their Linear Maps.- x2 The Singular Complex.- x3 Singular Homology.- x4 Special Cases.- x5 Invariance under Homotopy.- x6 Barycentric Subdivision.- x7 Small Simplices. Excision.- x8 Mayer-Vietoris Sequences.- IV Applications to Euclidean Space.- x1 Standard Maps between Cells and Spheres.- x2 Homology of Cells and Spheres.- x3 Local Homology.- x4 The Degree of a Map.- x5 Local Degrees.- x6 Homology Properties of Neighborhood Retracts in ?n.- x7 Jordan Theorem, Invariance of Domain.- x8 Euclidean Neighborhood Retracts (ENRs).- V Cellular Decomposition and Cellular Homology.- x1 Cellular Spaces.- x2 CW-Spaces.- x3 Examples.- x4 Homology Properties of CW-Spaces.- x5 The Euler-Poincare Characteristic.- x6 Description of Cellular Chain Maps and of the Cellular Boundary Homomorphism.- x7 Simplicial Spaces.- x8 Simplicial Homology.- VI Functors of Complexes.- x1 Modules.- x2 Additive Functors.- x3 Derived Functors.- x4 Universal Coefficient Formula.- x5 Tensor and Torsion Products.- x6 Horn and Ext.- x7 Singular Homology and Cohomology with General Coefficient Groups.- x8 Tensorproduct and Bilinearity.- x9 Tensorproduct of Complexes. Kunneth Formula.- x10 Horn of Complexes. Homotopy Classification of Chain Maps.- x11 Acyclic Models.- x12 The Eilenberg-Zilber Theorem. Kunneth Formulas for Spaces.- VII Products.- x1 The Scalar Product.- x2 The Exterior Homology Product.- x 3 The Interior Homology Product (Pontijagin Product).- x 4 Intersection Numbers in ?n.- x5 The Fixed Point Index.- x6 The Lefschetz-Hopf Fixed Point Theorem.- x7 The Exterior Cohomology Product.- x 8 The Interior Cohomology Product (?-Product).- x 9 ?-Products in Projective Spaces. Hopf Maps and Hopf Invariant.- x10 Hopf Algebras.- x11 The Cohomology Slant Product.- x12 The Cap-Product (?-Product).- x 13 The Homology Slant Product, and the Pontijagin Slant Product.- VIII Manifolds.- x1 Elementary Properties of Manifolds.- x2 The Orientation Bundle of a Manifold.- x3 Homology of Dimensions ? n in n-Manifolds.- x4 Fundamental Class and Degree.- x5 Limits.- x6 ?ech Cohomology of Locally Compact Subsets of ?n.- x7 Poincare-Lefschetz Duality.- x8 Examples, Applications.- x9 Duality in ?-Manifolds.- x10 Transfer.- x11 Thom Class, Thom Isomorphism.- x12 The Gysin Sequence. Examples.- x13 Intersection of Homology Classes.- Appendix: Kan- and ?ech-Extensions of Functors.- x1 Limits of Functors.- x2 Polyhedrons under a Space, and Partitions of Unity.- x3 Extending Functors from Polyhedrons to More General Spaces.
Series Title: Classics in mathematics
Responsibility: Albrecht Dold.
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Lectures on algebraic topology
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "468815757" ;
    library:placeOfPublication <> ;
    library:placeOfPublication <> ; # Berlin
    schema:about <> ; # homologie
    schema:about <> ; # variété
    schema:about <> ; # décomposition cellulaire
    schema:about <> ; # Topologie algébrique
    schema:about <> ; # foncteur
    schema:about <> ;
    schema:about <> ; # espace euclidien
    schema:about <> ; # algèbre homologique
    schema:author <> ; # Albrecht Dold
    schema:bookEdition "2nd ed." ;
    schema:bookFormat bgn:PrintBook ;
    schema:datePublished "1995" ;
    schema:exampleOfWork <> ;
    schema:inLanguage "en" ;
    schema:isPartOf <> ; # Classics in mathematics
    schema:name "Lectures on algebraic topology" ;
    schema:productID "468815757" ;
    schema:publication <> ;
    schema:publisher <> ; # Springer-Verlag
    schema:workExample <> ;
    wdrs:describedby <> ;

Related Entities

<> # Springer-Verlag
    a bgn:Agent ;
    schema:name "Springer-Verlag" ;

<> # Albrecht Dold
    a schema:Person ;
    schema:birthDate "1928" ;
    schema:deathDate "" ;
    schema:familyName "Dold" ;
    schema:givenName "Albrecht" ;
    schema:name "Albrecht Dold" ;

<> # Classics in mathematics
    a bgn:PublicationSeries ;
    schema:hasPart <> ; # Lectures on algebraic topology
    schema:name "Classics in mathematics" ;

<> # algèbre homologique
    a schema:Intangible ;
    schema:name "algèbre homologique" ;

<> # décomposition cellulaire
    a schema:Intangible ;
    schema:name "décomposition cellulaire" ;

<> # espace euclidien
    a schema:Intangible ;
    schema:name "espace euclidien" ;

<> # Topologie algébrique
    a schema:Intangible ;
    schema:name "Topologie algébrique" ;
    schema:name "topologie algèbrique" ;

    a schema:ProductModel ;
    schema:isbn "3540586601" ;
    schema:isbn "9783540586609" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.