skip to content
Lie Groups Beyond an Introduction Preview this item
ClosePreview this item
Checking...

Lie Groups Beyond an Introduction

Author: Anthony W Knapp
Publisher: Boston, MA : Birkhäuser Boston : Imprint : Birkhäuser, 1996.
Series: Progress in Mathematics, 140.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Lie Groups Beyond an Introduction takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. A feature of the presentation is that it encourages the reader's comprehension of Lie group  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Anthony W Knapp
ISBN: 9781475724530 1475724535
OCLC Number: 851766025
Description: 1 online resource (xv, 608 pages).
Contents: I. Lie Algebras and Lie Groups --
II. Complex Semisimple Lie Algebras --
III. Universal Enveloping Algebra --
IV. Compact Lie Groups --
V. Finite-Dimensional Representations --
VI. Structure Theory of Semisimple Groups --
VII. Advanced Structure Theory --
VIII. Integration --
Appendices --
A. Tensors, Filtrations, and Gradings --
1. Tensor Algebra --
2. Symmetric Algebra --
3. Exterior Algebra --
4. Filtrations and Gradings --
B. Lie's Third Theorem --
1. Levi Decomposition --
2. Lie's Third Theorem --
C. Data for Simple Lie Algebras --
1. Classical Irreducible Reduced Root Systems --
2. Exceptional Irreducible Reduced Root Systems --
3. Classical Noncompact Simple Real Lie Algebras --
4. Exceptional Noncompact Simple Real Lie Algebras --
Hints for Solutions of Problems --
Notes --
References --
Index of Notation.
Series Title: Progress in Mathematics, 140.
Responsibility: by Anthony W. Knapp.

Abstract:

Lie Groups Beyond an Introduction takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. A feature of the presentation is that it encourages the reader's comprehension of Lie group theory to evolve from beginner to expert: initial insights make use of actual matrices, while later insights come from such structural features as properties of root systems, or relationships among subgroups, or patterns among different subgroups. Topics include a description of all simply connected Lie groups in terms of semisimple Lie groups and semidirect products, the Cartan theory of complex semisimple Lie algebras, the Cartan-Weyl theory of the structure and representations of compact Lie groups and representations of complex semisimple Lie algebras, the classification of real semisimple Lie algebras, the structure theory of noncompact reductive Lie groups as it is now used in research, and integration on reductive groups. Many problems, tables, and bibliographical notes complete this comprehensive work, making the text suitable either for self-study or for courses in the second year of graduate study and beyond.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(4)

User lists with this item (1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/851766025> # Lie Groups Beyond an Introduction
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "851766025" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/38929607#Place/boston_ma> ; # Boston, MA
    schema:about <http://id.worldcat.org/fast/1152684> ; # Topological groups
    schema:about <http://id.worldcat.org/fast/948521> ; # Group theory
    schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
    schema:about <http://id.worldcat.org/fast/804885> ; # Algebra
    schema:about <http://dewey.info/class/512/e23/> ;
    schema:bookFormat schema:EBook ;
    schema:creator <http://viaf.org/viaf/49773921> ; # Anthony W. Knapp
    schema:datePublished "1996" ;
    schema:description "Lie Groups Beyond an Introduction takes the reader from the end of introductory Lie group theory to the threshold of infinite-dimensional group representations. Merging algebra and analysis throughout, the author uses Lie-theoretic methods to develop a beautiful theory having wide applications in mathematics and physics. A feature of the presentation is that it encourages the reader's comprehension of Lie group theory to evolve from beginner to expert: initial insights make use of actual matrices, while later insights come from such structural features as properties of root systems, or relationships among subgroups, or patterns among different subgroups. Topics include a description of all simply connected Lie groups in terms of semisimple Lie groups and semidirect products, the Cartan theory of complex semisimple Lie algebras, the Cartan-Weyl theory of the structure and representations of compact Lie groups and representations of complex semisimple Lie algebras, the classification of real semisimple Lie algebras, the structure theory of noncompact reductive Lie groups as it is now used in research, and integration on reductive groups. Many problems, tables, and bibliographical notes complete this comprehensive work, making the text suitable either for self-study or for courses in the second year of graduate study and beyond."@en ;
    schema:description "I. Lie Algebras and Lie Groups -- II. Complex Semisimple Lie Algebras -- III. Universal Enveloping Algebra -- IV. Compact Lie Groups -- V. Finite-Dimensional Representations -- VI. Structure Theory of Semisimple Groups -- VII. Advanced Structure Theory -- VIII. Integration -- Appendices -- A. Tensors, Filtrations, and Gradings -- 1. Tensor Algebra -- 2. Symmetric Algebra -- 3. Exterior Algebra -- 4. Filtrations and Gradings -- B. Lie's Third Theorem -- 1. Levi Decomposition -- 2. Lie's Third Theorem -- C. Data for Simple Lie Algebras -- 1. Classical Irreducible Reduced Root Systems -- 2. Exceptional Irreducible Reduced Root Systems -- 3. Classical Noncompact Simple Real Lie Algebras -- 4. Exceptional Noncompact Simple Real Lie Algebras -- Hints for Solutions of Problems -- Notes -- References -- Index of Notation."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/38929607> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/38929607#Series/progress_in_mathematics> ; # Progress in Mathematics ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/38929607#CreativeWork/> ;
    schema:name "Lie Groups Beyond an Introduction"@en ;
    schema:productID "851766025" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/851766025#PublicationEvent/boston_ma_birkhauser_boston_imprint_birkhauser_1996> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/38929607#Agent/imprint> ; # Imprint
    schema:publisher <http://experiment.worldcat.org/entity/work/data/38929607#Agent/birkhauser_boston> ; # Birkhäuser Boston
    schema:publisher <http://experiment.worldcat.org/entity/work/data/38929607#Agent/birkhauser> ; # Birkhäuser
    schema:url <https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/978-1-4757-2453-0> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3083900> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-0-8176-3926-6> ;
    schema:url <http://dx.doi.org/10.1007/978-1-4757-2453-0> ;
    schema:workExample <http://dx.doi.org/10.1007/978-1-4757-2453-0> ;
    schema:workExample <http://worldcat.org/isbn/9781475724530> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/851766025> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/38929607#Agent/birkhauser> # Birkhäuser
    a bgn:Agent ;
    schema:name "Birkhäuser" ;
    .

<http://experiment.worldcat.org/entity/work/data/38929607#Agent/birkhauser_boston> # Birkhäuser Boston
    a bgn:Agent ;
    schema:name "Birkhäuser Boston" ;
    .

<http://experiment.worldcat.org/entity/work/data/38929607#Series/progress_in_mathematics> # Progress in Mathematics ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/851766025> ; # Lie Groups Beyond an Introduction
    schema:name "Progress in Mathematics ;" ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
    schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/1152684> # Topological groups
    a schema:Intangible ;
    schema:name "Topological groups"@en ;
    .

<http://id.worldcat.org/fast/804885> # Algebra
    a schema:Intangible ;
    schema:name "Algebra"@en ;
    .

<http://id.worldcat.org/fast/948521> # Group theory
    a schema:Intangible ;
    schema:name "Group theory"@en ;
    .

<http://viaf.org/viaf/49773921> # Anthony W. Knapp
    a schema:Person ;
    schema:familyName "Knapp" ;
    schema:givenName "Anthony W." ;
    schema:name "Anthony W. Knapp" ;
    .

<http://worldcat.org/isbn/9781475724530>
    a schema:ProductModel ;
    schema:isbn "1475724535" ;
    schema:isbn "9781475724530" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.