skip to content
Lie groups, lie algebras, and cohomology Preview this item
ClosePreview this item
Checking...

Lie groups, lie algebras, and cohomology

Author: Anthony William Knapp
Publisher: Princeton [N.J.] : Princeton University Press, 1988.
Series: Mathematical notes (Princeton), 34.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:

Starting with the elementary theory of Lie groups of matrices, this book arrives at the definition, elementary properties, and first applications of cohomological induction. It is based on a  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Anthony William Knapp
ISBN: 069108498X 9780691084985
OCLC Number: 490433620
Description: 1 v. (XII-509 p.) ; 24 cm.
Series Title: Mathematical notes (Princeton), 34.
Responsibility: by Anthony W. Knapp.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/490433620> # Lie groups, lie algebras, and cohomology
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "490433620" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nju> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/892783#Place/princeton_n_j> ; # Princeton N.J.
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/algebres_de_lie_cohomologie> ; # algèbres de Lie--cohomologie
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/groupes_de_lie> ; # groupes de Lie
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/homologie> ; # Homologie
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/representation_groupe_lie> ; # représentation groupe Lie
   schema:about <http://id.worldcat.org/fast/959720> ; # Homology theory
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/cohomologie> ; # Cohomologie
   schema:about <http://id.worldcat.org/fast/998135> ; # Lie groups
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/algebre_homologique> ; # algèbre homologique
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/theorie_homologie> ; # théorie homologie
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/theorie_representation> ; # théorie représentation
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/algebre_lie> ; # algèbre Lie
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/algebres_de_lie> ; # algèbres de Lie
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/groupe_lie> ; # groupe Lie
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/lie_algebres_de> ; # Lie, Algèbres de
   schema:about <http://experiment.worldcat.org/entity/work/data/892783#Topic/lie_groupes_de> ; # Lie, Groupes de
   schema:about <http://id.worldcat.org/fast/998125> ; # Lie algebras
   schema:about <http://dewey.info/class/512.55/e19/> ;
   schema:bookFormat bgn:PrintBook ;
   schema:creator <http://viaf.org/viaf/49773921> ; # Anthony William Knapp
   schema:datePublished "1988" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/892783> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/892783#Series/mathematical_notes_princeton> ; # Mathematical notes (Princeton) ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/892783#Series/mathematical_notes> ; # Mathematical notes ;
   schema:name "Lie groups, lie algebras, and cohomology" ;
   schema:productID "490433620" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/490433620#PublicationEvent/princeton_n_j_princeton_university_press_1988> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/892783#Agent/princeton_university_press> ; # Princeton University Press
   schema:workExample <http://worldcat.org/isbn/9780691084985> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/490433620> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/892783#Agent/princeton_university_press> # Princeton University Press
    a bgn:Agent ;
   schema:name "Princeton University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Place/princeton_n_j> # Princeton N.J.
    a schema:Place ;
   schema:name "Princeton N.J." ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Series/mathematical_notes> # Mathematical notes ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/490433620> ; # Lie groups, lie algebras, and cohomology
   schema:name "Mathematical notes ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Series/mathematical_notes_princeton> # Mathematical notes (Princeton) ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/490433620> ; # Lie groups, lie algebras, and cohomology
   schema:name "Mathematical notes (Princeton) ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/algebre_homologique> # algèbre homologique
    a schema:Intangible ;
   schema:name "algèbre homologique" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/algebres_de_lie> # algèbres de Lie
    a schema:Intangible ;
   schema:name "algèbres de Lie" ;
   schema:name "Algèbres de Lie"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/algebres_de_lie_cohomologie> # algèbres de Lie--cohomologie
    a schema:Intangible ;
   schema:name "algèbres de Lie--cohomologie" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/cohomologie> # Cohomologie
    a schema:Intangible ;
   schema:name "Cohomologie" ;
   schema:name "cohomologie" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/groupes_de_lie> # groupes de Lie
    a schema:Intangible ;
   schema:name "groupes de Lie" ;
   schema:name "Groupes de Lie"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/homologie> # Homologie
    a schema:Intangible ;
   schema:name "Homologie" ;
   schema:name "Homologie"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/lie_algebres_de> # Lie, Algèbres de
    a schema:Intangible ;
   schema:name "Lie, Algèbres de" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/representation_groupe_lie> # représentation groupe Lie
    a schema:Intangible ;
   schema:name "représentation groupe Lie" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/theorie_homologie> # théorie homologie
    a schema:Intangible ;
   schema:name "théorie homologie" ;
    .

<http://experiment.worldcat.org/entity/work/data/892783#Topic/theorie_representation> # théorie représentation
    a schema:Intangible ;
   schema:name "théorie représentation" ;
    .

<http://id.worldcat.org/fast/959720> # Homology theory
    a schema:Intangible ;
   schema:name "Homology theory" ;
    .

<http://id.worldcat.org/fast/998125> # Lie algebras
    a schema:Intangible ;
   schema:name "Lie algebras" ;
    .

<http://id.worldcat.org/fast/998135> # Lie groups
    a schema:Intangible ;
   schema:name "Lie groups" ;
    .

<http://viaf.org/viaf/49773921> # Anthony William Knapp
    a schema:Person ;
   schema:birthDate "1941" ;
   schema:deathDate "" ;
   schema:familyName "Knapp" ;
   schema:givenName "Anthony William" ;
   schema:name "Anthony William Knapp" ;
    .

<http://worldcat.org/isbn/9780691084985>
    a schema:ProductModel ;
   schema:isbn "069108498X" ;
   schema:isbn "9780691084985" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.