skip to content
Limites hydrodynamiques et fluctuations à l'équilibre pour des systèmes de particules en interaction Preview this item
ClosePreview this item
Checking...

Limites hydrodynamiques et fluctuations à l'équilibre pour des systèmes de particules en interaction

Author: Katalin Nagy; Jozsef Fritz; Stefano Olla; Université Paris-Dauphine,
Publisher: [S.l.] : [s.n.], 2006.
Dissertation: Thèse de doctorat: Mathématiques: Université Paris-Dauphine: 2006.
Thèse de doctorat: Mathématiques: Eotos Lorand Tudomanyegyetem, Budapest: 2006.
Edition/Format:   Thesis/dissertation : Thesis/dissertation : French
Database:WorldCat
Summary:
Cette thèse traite de trois modèles différents de systèmes de particules en interaction. Dans la première partie de la thèse nous présentons une preuve élémentaire du théorème de la limite centrale pour la marche aléatoire en milieu aléatoire en dimension un et nous prouvons la limite hydrodynamique de l'exclusion simple symétrique en milieu aléatoire. Dans la deuxième partie nous étudions un
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Thesis/dissertation
Document Type: Book
All Authors / Contributors: Katalin Nagy; Jozsef Fritz; Stefano Olla; Université Paris-Dauphine,
OCLC Number: 493634892
Notes: Thèse soutenue en co-tutelle.
Description: 1 vol. (85 p.) ; 30 cm
Responsibility: Katalin Nagy ; sous la dir.de Jozsef Fritz et Stefano Olla.

Abstract:

Cette thèse traite de trois modèles différents de systèmes de particules en interaction. Dans la première partie de la thèse nous présentons une preuve élémentaire du théorème de la limite centrale pour la marche aléatoire en milieu aléatoire en dimension un et nous prouvons la limite hydrodynamique de l'exclusion simple symétrique en milieu aléatoire. Dans la deuxième partie nous étudions un modèle hyperbolique attractif de gaz sur réseau. À l'aide de la méthode de compacité par compensation, des inégalités de Sobolev logarithmiques et de l'inégalité d'entropie de Lax nous démontrons l'existence et l'unicité de la limite hydrodynamique même dans le régime des chocs. Dans la troisième partie de la thèse nous étudions un système d'oscillateurs harmoniques avec bruit multiplicatif. Nous prouvons que les fluctuations à l'équilibre des champs conservés (énergie et déformation) sous une renormalisation diffusive sont décrites par une paire de processus d'Ornstein-Uhlenbeck généralisés.

This thesis concerns three different models of interacting particle systems. In the first part of the thesis we give an elementary proof of the central limit theorem for one dimensional symmetric random walk in random environment and we derive the hydrodynamic limit of the symmetric simple exclusion in random environment. In the second part we investigate a hyperbolic and non-attractive lattice-gas model. By means of the method of compensated compactness, logarithmic Sobolev inequalities and the Lax entropy inequality we prove existence and uniqueness of the hydrodynamic limit even in the regime of shocks. In the third part of the thesis we consider a system of harmonic oscillators with multiplicative noise. We show that the equilibrium fluctuations of the conserved fields (energy and deformation) at a diffusive scaling are described by a couple of generalized Ornstein-Uhlenbeck processes.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/493634892>
library:oclcnum"493634892"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/493634892>
rdf:typeschema:Book
rdf:typej.2:Thesis
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2006"
schema:description"This thesis concerns three different models of interacting particle systems. In the first part of the thesis we give an elementary proof of the central limit theorem for one dimensional symmetric random walk in random environment and we derive the hydrodynamic limit of the symmetric simple exclusion in random environment. In the second part we investigate a hyperbolic and non-attractive lattice-gas model. By means of the method of compensated compactness, logarithmic Sobolev inequalities and the Lax entropy inequality we prove existence and uniqueness of the hydrodynamic limit even in the regime of shocks. In the third part of the thesis we consider a system of harmonic oscillators with multiplicative noise. We show that the equilibrium fluctuations of the conserved fields (energy and deformation) at a diffusive scaling are described by a couple of generalized Ornstein-Uhlenbeck processes."
schema:description"Cette thèse traite de trois modèles différents de systèmes de particules en interaction. Dans la première partie de la thèse nous présentons une preuve élémentaire du théorème de la limite centrale pour la marche aléatoire en milieu aléatoire en dimension un et nous prouvons la limite hydrodynamique de l'exclusion simple symétrique en milieu aléatoire. Dans la deuxième partie nous étudions un modèle hyperbolique attractif de gaz sur réseau. À l'aide de la méthode de compacité par compensation, des inégalités de Sobolev logarithmiques et de l'inégalité d'entropie de Lax nous démontrons l'existence et l'unicité de la limite hydrodynamique même dans le régime des chocs. Dans la troisième partie de la thèse nous étudions un système d'oscillateurs harmoniques avec bruit multiplicatif. Nous prouvons que les fluctuations à l'équilibre des champs conservés (énergie et déformation) sous une renormalisation diffusive sont décrites par une paire de processus d'Ornstein-Uhlenbeck généralisés."
schema:exampleOfWork<http://worldcat.org/entity/work/id/368006970>
schema:name"Limites hydrodynamiques et fluctuations à l'équilibre pour des systèmes de particules en interaction"
schema:publisher
schema:url

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.