skip to content
Linear regression Preview this item
ClosePreview this item
Checking...

Linear regression

Author: David J Olive
Publisher: Cham, Switzerland : Springer, 2017.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Olive, David J.
Linear regression.
Cham, Switzerland : Springer, 2017
(OCoLC)972802294
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: David J Olive
ISBN: 9783319552521 331955252X
OCLC Number: 984514200
Description: 1 online resource (xiv, 494 pages) : illustrations
Contents: Introduction --
Multiple Linear Regression --
Building an MLR Model --
WLS and Generalized Least Squares --
One Way Anova --
The K Way Anova Model --
Block Designs --
Orthogonal Designs --
More on Experimental Designs --
Multivariate Models --
Theory for Linear Models --
Multivariate Linear Regression --
GLMs and GAMs --
Stuff for Students.
Responsibility: David J. Olive.

Abstract:

This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models. This text is for graduates and undergraduates with a strong mathematical background. The prerequisites for this text are linear algebra and a calculus based course in statistics.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/984514200> # Linear regression
    a schema:Book, schema:MediaObject, schema:CreativeWork ;
    library:oclcnum "984514200" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4186577322#Topic/statistics> ; # Statistics
    schema:about <http://experiment.worldcat.org/entity/work/data/4186577322#Topic/statistics_and_computing_statistics_programs> ; # Statistics and Computing/Statistics Programs
    schema:about <http://dewey.info/class/519.536/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4186577322#Topic/statistical_theory_and_methods> ; # Statistical Theory and Methods
    schema:about <http://experiment.worldcat.org/entity/work/data/4186577322#Topic/regression_analysis> ; # Regression analysis
    schema:author <http://experiment.worldcat.org/entity/work/data/4186577322#Person/olive_david_j> ; # David J. Olive
    schema:bookFormat schema:EBook ;
    schema:datePublished "2017" ;
    schema:description "This text covers both multiple linear regression and some experimental design models. The text uses the response plot to visualize the model and to detect outliers, does not assume that the error distribution has a known parametric distribution, develops prediction intervals that work when the error distribution is unknown, suggests bootstrap hypothesis tests that may be useful for inference after variable selection, and develops prediction regions and large sample theory for the multivariate linear regression model that has m response variables. A relationship between multivariate prediction regions and confidence regions provides a simple way to bootstrap confidence regions. These confidence regions often provide a practical method for testing hypotheses. There is also a chapter on generalized linear models and generalized additive models. There are many R functions to produce response and residual plots, to simulate prediction intervals and hypothesis tests, to detect outliers, and to choose response transformations for multiple linear regression or experimental design models. This text is for graduates and undergraduates with a strong mathematical background. The prerequisites for this text are linear algebra and a calculus based course in statistics."@en ;
    schema:description "Introduction -- Multiple Linear Regression -- Building an MLR Model -- WLS and Generalized Least Squares -- One Way Anova -- The K Way Anova Model -- Block Designs -- Orthogonal Designs -- More on Experimental Designs -- Multivariate Models -- Theory for Linear Models -- Multivariate Linear Regression -- GLMs and GAMs -- Stuff for Students."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/4186577322> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/972802294> ;
    schema:name "Linear regression"@en ;
    schema:productID "984514200" ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-319-55250-7> ;
    schema:url <http://rave.ohiolink.edu/ebooks/ebc/9783319552521> ;
    schema:url <http://link.springer.com/10.1007/978-3-319-55252-1> ;
    schema:url <https://0-link-springer-com.pugwash.lib.warwick.ac.uk/10.1007/978-3-319-55252-1> ;
    schema:url <http://libproxy.uwyo.edu/login/?url=http://dx.doi.org/10.1007/978-3-319-55252-1> ;
    schema:url <http://dx.doi.org/10.1007/978-3-319-55252-1> ;
    schema:url <http://uproxy.library.dc-uoit.ca/login?url=http://link.springer.com/10.1007/978-3-319-55252-1> ;
    schema:url <https://0-link-springer-com.pugwash.lib.warwick.ac.uk/book/10.1007/978-3-319-55252-1> ;
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=5577168> ;
    schema:url <https://link.springer.com/10.1007/978-3-319-55252-1> ;
    schema:url <https://grinnell.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-55252-1> ;
    schema:url <http://uproxy.library.dc-uoit.ca/login?url=http://books.scholarsportal.info/viewdoc.html?id=/ebooks/ebooks3/springer/2017-08-17/4/9783319552521> ;
    schema:url <http://proxy.ohiolink.edu:9099/login?url=http://link.springer.com/10.1007/978-3-319-55252-1> ;
    schema:url <http://libproxy.uwinnipeg.ca/login?url=http://link.springer.com/10.1007/978-3-319-55252-1> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-319-55252-1> ;
    schema:workExample <http://worldcat.org/isbn/9783319552521> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/984514200> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/4186577322#Person/olive_david_j> # David J. Olive
    a schema:Person ;
    schema:familyName "Olive" ;
    schema:givenName "David J." ;
    schema:name "David J. Olive" ;
    .

<http://experiment.worldcat.org/entity/work/data/4186577322#Topic/regression_analysis> # Regression analysis
    a schema:Intangible ;
    schema:name "Regression analysis"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4186577322#Topic/statistical_theory_and_methods> # Statistical Theory and Methods
    a schema:Intangible ;
    schema:name "Statistical Theory and Methods"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4186577322#Topic/statistics_and_computing_statistics_programs> # Statistics and Computing/Statistics Programs
    a schema:Intangible ;
    schema:name "Statistics and Computing/Statistics Programs"@en ;
    .

<http://rave.ohiolink.edu/ebooks/ebc/9783319552521>
    rdfs:comment "Connect to resource" ;
    .

<http://uproxy.library.dc-uoit.ca/login?url=http://link.springer.com/10.1007/978-3-319-55252-1>
    rdfs:comment "eBook available for UOIT via SpringerLink. Click link to access" ;
    .

<http://worldcat.org/isbn/9783319552521>
    a schema:ProductModel ;
    schema:isbn "331955252X" ;
    schema:isbn "9783319552521" ;
    .

<http://www.worldcat.org/oclc/972802294>
    a schema:CreativeWork ;
    rdfs:label "Linear regression." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/984514200> ; # Linear regression
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.