skip to content
Local quantum physics : fields, particles, algebras Preview this item
ClosePreview this item

Local quantum physics : fields, particles, algebras

Author: Rudolf Haag
Publisher: Berlin [u.a.] Springer 1996
Series: Texts and monographs in physics
Edition/Format:   Print book : English : 2., rev. and enl. edView all editions and formats

The new edition provided the opportunity of adding a new chapter entitled "Principles and Lessons of Quantum Physics". It concerns the char- acterization of specific theories within the general frame  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Rudolf Haag
ISBN: 3540610499 9783540610496 3540614516 9783540614517
OCLC Number: 845173753
Notes: Literaturverz. S. [349] - 353
Description: XV, 390 S graph. Darst 25 cm
Contents: I. Background.- 1. Quantum Mechanics.- Basic concepts, mathematical structure, physical interpretation..- 2. The Principle of Locality in Classical Physics and the Relativity Theories.- Faraday's vision. Fields..- 2.1 Special relativity. Poincare group. Lorentz group. Spinors. Conformal group..- 2.2 Maxwell theory..- 2.3 General relativity..- 3. Poincare Invariant Quantum Theory.- 3.1 Geometric symmetries in quantum physics. Projective representations and the covering group..- 3.2 Wigner's analysis of irreducible, unitary representations of the Poincare group. 3.3 Single particle states. Spin..- 3.4 Many particle states: Bose-Fermi alternative, Fock space, creation operators. Separation of CM-motion..- 4. Action Principle.- Lagrangean. Double role of physical quantities. Peierls' direct definition of Poisson brackets. Relation between local conservation laws and symmetries..- 5. Basic Quantum Field Theory.- 5.1 Canonical quantization..- 5.2 Fields and particles..- 5.3 Free fields..- 5.4 The Maxwell-Dirac system. Gauge invariance..- 5.5 Processes..- II. General Quantum Field Theory.- 1. Mathematical Considerations and General Postulates.- 1.1 The representation problem..- 1.2 Wightman axioms..- 2. Hierarchies of Functions.- 2.1 Wightman functions, reconstruction theorem, analyticity in x-space..- 2.2 Truncated functions, clustering. Generating functionals and linked cluster theorem..- 2.3 Time ordered functions..- 2.4 Covariant perturbation theory, Feynman diagrams. Renormalization..- 2.5 Vertex functions and structure analysis..- 2.6 Retarded functions and analyticity in p-space..- 2.7 Schwinger functions and Osterwalder-Schrader theorem..- 3. Physical Interpretation in Terms of Particles.- 3.1 The particle picture: Asymptotic particle configurations and collision theory..- 3.2 Asymptotic fields. S-matrix..- 3.3 LSZ-formalism..- 4. General Collision Theory.- 4.1 Polynomial algebras of fields. Almost local operators..- 4.2 Construction of asymptotic particle states..- 4.3. Coincidence arrangements of detectors..- 4.4 Generalized LSZ-formalism..- 5. Some Consequences of the Postulates.- 5.1 CPT-operator. Spin-statistics theorem. CPT-theorem..- 5.2 Analyticity of the S-matrix..- 5.3 Reeh-Schlieder theorem..- 5.4 Additivity of the energy-momentum-spectrum..- 5.5 Borchers classes..- III. Algebras of Local Observables and Fields.- 1. Review of the Perspective.- Characterization of the theory by a net of local algebras. Bounded operators. Unobservable fields, superselection rules and the net of abstract algebras of observables. Transcription of the basic postulates..- 2. Von Neumann Algebras. C*-Algebras. W*-Algebras.- 2.1 Algebras of bounded operators. Concrete C*-algebras and von Neumann algebras. Isomorphisms. Reduction. Factors. Classification of factors..- 2.2 Abstract algebras and their representations. Abstract C*-algebras. Relation between the C*-norm and the spectrum. Positive linear forms and states. The GNS-construction. Folia of states. Intertwiners. Primary states and cluster property. Purification. W*-algebras..- 3. The Net of Algebras of Local Observables.- 3.1 Smoothness and integration. Local definiteness and local normality..- 3.2 Symmetries and symmetry breaking. Vacuum states. The spectral ideals..- 3.3 Summary of the structure..- 4. The Vacuum Sector.- 4.1 The orthocomplemented lattice of causally complete regions..- 4.2 The net of von Neumann algebras in the vacuum representation..- IV. Charges, Global Gauge Groups and Exchange Symmetry.- 1. Charge Superselection Sectors.- "Strange statistics". Charges. Selection criteria for relevant sectors. The program and survey of results..- 2. The DHR-Analysis.- 2.1 Localized morphisms..- 2.2 Intertwiners and exchange symmetry ("Statistics")..- 2.3 Charge conjugation, statistics parameter..- 2.4 Covariant sectors and energy-momentum spectrum..- 2.5 Fields and collision theory..- 3. The Buchholz-Fredenhagen-Analysis.- 3.1 Localized 1-particle states..- 3.2 BF-topological charges..- 3.3 Composition of sectors and exchange symmetry..- 3.4 Charge conjugation and the absence of "infinite statistics"..- 4. Global Gauge Group and Charge Carrying Fields.- Implementation of endomorphisms. Charges with d = 1. Endomorphisms and non Abelian gauge group. DR categories and the embedding theorem..- 5. Low Dimensional Space-Time and Braid Group Statistics.- Statistics operator and braid group representations. The 2+1-dimensional case with BF-charges. Statistics parameter and Jones index..- V. Thermal States and Modular Automorphisms.- 1. Gibbs Ensembles, Thermodynamic Limit, KMS-Condition.- 1.1 Introduction..- 1.2 Equivalence of KMS-condition to Gibbs ensembles for finite volume..- 1.3 The arguments for Gibbs ensembles..- 1.4 The representation induced by a KMS-state..- 1.5 Phases, symmetry breaking and the decomposition of KMS-states..- 1.6 Variational principles and autocorrelation inequalities..- 2. Modular Automorphisms and Modular Conjugation.- 2.1 The Tomita-Takesaki theorem..- 2.2 Vector representatives of states. Convex cones in H..- 2.3 Relative modular operators and Radon-Nikodym derivatives..- 2.4 Classification of factors..- 3. Direct Characterization of Equilibrium States.- 3.1 Introduction..- 3.2 Stability..- 3.3 Passivity..- 3.4 Chemical potential..- 4. Modular Automorphisms of Local Algebras.- 4.1 The Bisognano-Wichmann theorem..- 4.2 Conformal invariance and the theorem of Hislop and Longo..- 5. Phase Space, Nuclearity, Split Property, Local Equilibrium.- 5.1 Introduction..- 5.2 Nuclearity and split property..- 5.3 Open subsystems..- 5.4 Modular nuclearity..- 6. The Universal Type of Local Algebras.- VI. Particles. Completeness of the Particle Picture.- 1. Detectors, Coincidence Arrangements, Cross Sections.- 1.1 Generalities..- 1.2 Asymptotic particle configurations. Buchholz's strategy..- 2. The Particle Content.- 2.1 Particles and infraparticles..- 2.2 Single particle weights and their decomposition..- 2.3 Remarks on the particle picture and its completeness..- 3. The Physical State Space of Quantum Electrodynamics.- VII. Principles and Lessons of Quantum Physics. A Review of Interpretations, Mathematical Formalism and Perspectives.- 1. The Copenhagen Spirit. Criticisms, Elaborations.- Niels Bohr's epistemological considerations. Realism. Physical systems and the division problem. Persistent non-classical correlations. Collective coordinates, decoherence and the classical approximation. Measurements. Correspondence and quantization. Time reflection asymmetry of statistical conclusions..- 2. The Mathematical Formalism.- Operational assumptions. "Quantum Logic". Convex cones..- 3. The Evolutionary Picture.- Events, causal links and their attributes. Irreversibility. The EPR-effect. Ensembles vs. individuals. Decisions. Comparison with standard procedure..- VIII. Retrospective and Outlook.- 1. Algebraic Approach vs. Euclidean Quantum Field Theory.- 2. Supersymmetry.- 3. The Challenge from General Relativity.- 3.1 Introduction..- 3.2 Quantum field theory in curved space-time..- 3.3 Hawking temperature and Hawking radiation..- 3.4 A few remarks on quantum gravity..- Author Index and References.
Series Title: Texts and monographs in physics
Responsibility: Rudolf Haag
More information:


Editorial reviews

Publisher Synopsis

"Indeed, both the expert in the field and the novice will enjoy Haags insightful exposition... This (superb) book is bound to occupy a place on a par with other classics in the mathematical physics Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Local quantum physics : fields, particles, algebras
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "845173753" ;
   library:placeOfPublication <> ; # Berlin u.a.
   library:placeOfPublication <> ;
   schema:about <> ; # Quantum field theory
   schema:about <> ;
   schema:about <> ; # Quantum field theory
   schema:about <> ; # Quantenfeld
   schema:about <> ; # Elementarteilchen--Mathematische Methode
   schema:about <> ; # Algebraische Methode
   schema:about <> ; # Quantum theory
   schema:about <> ; # Quantum theory
   schema:about <> ; # Quantenphysik--Mathematische Methode
   schema:about <> ; # Quantenfeldtheorie
   schema:bookEdition "2., rev. and enl. ed" ;
   schema:bookFormat bgn:PrintBook ;
   schema:creator <> ; # Rudolf Haag
   schema:datePublished "1996" ;
   schema:exampleOfWork <> ;
   schema:inLanguage "en" ;
   schema:isPartOf <> ; # Texts and monographs in physics
   schema:name "Local quantum physics : fields, particles, algebras" ;
   schema:productID "845173753" ;
   schema:publication <> ;
   schema:publisher <> ; # Springer
   schema:url <> ;
   schema:url <> ;
   schema:workExample <> ;
   schema:workExample <> ;
   umbel:isLike <> ;
   wdrs:describedby <> ;

Related Entities

<> # Texts and monographs in physics
    a bgn:PublicationSeries ;
   schema:hasPart <> ; # Local quantum physics : fields, particles, algebras
   schema:name "Texts and monographs in physics" ;

<> # Algebraische Methode
    a schema:Intangible ;
   schema:name "Algebraische Methode" ;

<> # Elementarteilchen--Mathematische Methode
    a schema:Intangible ;
   schema:name "Elementarteilchen--Mathematische Methode" ;

<> # Quantenphysik--Mathematische Methode
    a schema:Intangible ;
   schema:name "Quantenphysik--Mathematische Methode" ;

<> # Quantum field theory
    a schema:Intangible ;
   schema:name "Quantum field theory" ;

<> # Quantum theory
    a schema:Intangible ;
   schema:name "Quantum theory" ;

<> # Quantum field theory
    a schema:Intangible ;
   schema:name "Quantum field theory" ;

<> # Quantum theory
    a schema:Intangible ;
   schema:name "Quantum theory" ;

<> # Rudolf Haag
    a schema:Person ;
   schema:familyName "Haag" ;
   schema:givenName "Rudolf" ;
   schema:name "Rudolf Haag" ;

    a schema:ProductModel ;
   schema:isbn "3540610499" ;
   schema:isbn "9783540610496" ;

    a schema:ProductModel ;
   schema:isbn "3540614516" ;
   schema:isbn "9783540614517" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.