skip to content
Locally Conformal Kähler Geometry Preview this item
ClosePreview this item
Checking...

Locally Conformal Kähler Geometry

Author: Sorin Dragomir; Liviu Ornea
Publisher: Boston, MA : Birkhäuser Boston : Imprint : Birkhäuser, 1998.
Series: Progress in Mathematics, 155.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
. E C, 0 <1>'1 <1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~>.z, z E C - {a}. Then (cf.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Sorin Dragomir; Liviu Ornea
ISBN: 9781461220268 1461220262
OCLC Number: 853260695
Description: 1 online resource (xiii, 330 pages).
Contents: 1 L.c.K. Manifolds --
2 Principally Important Properties --
2.1 Vaisman's conjectures --
2.2 Reducible manifolds --
2.3 Curvature properties --
2.4 Blow-up --
2.5 An adapted cohomology --
3 Examples --
3.1 Hopf manifolds --
3.2 The Inoue surfaces --
3.3 A generalization of Thurston's manifold --
3.4 A four-dimensional solvmanifold --
3.5 SU(2) x S1 --
3.6 Noncompact examples --
3.7 Brieskorn & Van de Ven's manifolds --
4 Generalized Hopf manifolds --
5 Distributions on a g.H. manifold --
6 Structure theorems --
6.1 Regular Vaisman manifolds --
6.2 L.c.K.0 manifolds --
6.3 A spectral characterization --
6.4 k-Vaisman manifolds --
7 Harmonic and holomorphic forms --
7.1 Harmonic forms --
7.2 Holomorphic vector fields --
8 Hermitian surfaces --
9 Holomorphic maps --
9.1 General properties --
9.2 Pseudoharmonic maps --
9.3 A Schwarz lemma --
10 L.c.K. submersions --
10.1 Submersions from CH?n --
10.2 L.c.K. submersions --
10.3 Compact total space --
10.4 Total space a g.H. manifold --
11 L.c. hyperKähler manifolds --
12 Submanifolds --
12.1 Fundamental tensors --
12.2 Complex and CR submanifolds --
12.3 Anti-invariant submanifolds --
12.4 Examples --
12.5 Distributions on submanifolds --
12.6 Totally umbilical submanifolds --
13 Extrinsic spheres --
13.1 Curvature-invariant submanifolds --
13.2 Extrinsic and standard spheres --
13.3 Complete intersections --
13.4 Yano's integral formula --
14 Real hypersurfaces --
14.1 Principal curvatures --
14.2 Quasi-Einstein hypersurfaces --
14.3 Homogeneous hypersurfaces --
14.4 Type numbers --
14.5 L. c. cosymplectic metrics --
15 Complex submanifolds --
15.1 Quasi-Einstein submanifolds --
15.2 The normal bundle --
15.3 L.c.K. and Kähler submanifolds --
15.4 A Frankel type theorem --
15.5 Planar geodesic immersions --
16 Integral formulae --
16.1 Hopf fibrations --
16.2 The horizontal lifting technique --
16.3 The main result --
17 Miscellanea --
17.1 Parallel IInd fundamental form --
17.2 Stability --
17.3 f-Structures --
17.4 Parallel f-structure P --
17.5 Sectional curvature --
17.6 L. c. cosymplectic structures --
17.7 Chen's class --
17.8 Geodesic symmetries --
17.9 Submersed CR submanifolds --
A Boothby-Wang fibrations --
B Riemannian submersions.
Series Title: Progress in Mathematics, 155.
Responsibility: by Sorin Dragomir, Liviu Ornea.

Abstract:

. E C, 0 '1 . be the O-dimensional Lie n group generated by the transformation z >.z, z E C - {a}. Then (cf.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/853260695> # Locally Conformal Kähler Geometry
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "853260695" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/40961000#Place/boston_ma> ; # Boston, MA
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
    schema:about <http://dewey.info/class/516.36/e23/> ;
    schema:about <http://id.worldcat.org/fast/943477> ; # Global differential geometry
    schema:about <http://id.worldcat.org/fast/940864> ; # Geometry
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/115930330> ; # Liviu Ornea
    schema:creator <http://experiment.worldcat.org/entity/work/data/40961000#Person/dragomir_sorin> ; # Sorin Dragomir
    schema:datePublished "1998" ;
    schema:description "1 L.c.K. Manifolds -- 2 Principally Important Properties -- 2.1 Vaisman's conjectures -- 2.2 Reducible manifolds -- 2.3 Curvature properties -- 2.4 Blow-up -- 2.5 An adapted cohomology -- 3 Examples -- 3.1 Hopf manifolds -- 3.2 The Inoue surfaces -- 3.3 A generalization of Thurston's manifold -- 3.4 A four-dimensional solvmanifold -- 3.5 SU(2) x S1 -- 3.6 Noncompact examples -- 3.7 Brieskorn & Van de Ven's manifolds -- 4 Generalized Hopf manifolds -- 5 Distributions on a g.H. manifold -- 6 Structure theorems -- 6.1 Regular Vaisman manifolds -- 6.2 L.c.K.0 manifolds -- 6.3 A spectral characterization -- 6.4 k-Vaisman manifolds -- 7 Harmonic and holomorphic forms -- 7.1 Harmonic forms -- 7.2 Holomorphic vector fields -- 8 Hermitian surfaces -- 9 Holomorphic maps -- 9.1 General properties -- 9.2 Pseudoharmonic maps -- 9.3 A Schwarz lemma -- 10 L.c.K. submersions -- 10.1 Submersions from CH?n -- 10.2 L.c.K. submersions -- 10.3 Compact total space -- 10.4 Total space a g.H. manifold -- 11 L.c. hyperKähler manifolds -- 12 Submanifolds -- 12.1 Fundamental tensors -- 12.2 Complex and CR submanifolds -- 12.3 Anti-invariant submanifolds -- 12.4 Examples -- 12.5 Distributions on submanifolds -- 12.6 Totally umbilical submanifolds -- 13 Extrinsic spheres -- 13.1 Curvature-invariant submanifolds -- 13.2 Extrinsic and standard spheres -- 13.3 Complete intersections -- 13.4 Yano's integral formula -- 14 Real hypersurfaces -- 14.1 Principal curvatures -- 14.2 Quasi-Einstein hypersurfaces -- 14.3 Homogeneous hypersurfaces -- 14.4 Type numbers -- 14.5 L. c. cosymplectic metrics -- 15 Complex submanifolds -- 15.1 Quasi-Einstein submanifolds -- 15.2 The normal bundle -- 15.3 L.c.K. and Kähler submanifolds -- 15.4 A Frankel type theorem -- 15.5 Planar geodesic immersions -- 16 Integral formulae -- 16.1 Hopf fibrations -- 16.2 The horizontal lifting technique -- 16.3 The main result -- 17 Miscellanea -- 17.1 Parallel IInd fundamental form -- 17.2 Stability -- 17.3 f-Structures -- 17.4 Parallel f-structure P -- 17.5 Sectional curvature -- 17.6 L. c. cosymplectic structures -- 17.7 Chen's class -- 17.8 Geodesic symmetries -- 17.9 Submersed CR submanifolds -- A Boothby-Wang fibrations -- B Riemannian submersions."@en ;
    schema:description ". E C, 0 <1>'1 <1, and n E Z, n ~ 2. Let~.>. be the O-dimensional Lie n group generated by the transformation z ~>.z, z E C - {a}. Then (cf."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/40961000> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/40961000#Series/progress_in_mathematics> ; # Progress in Mathematics ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/40961000#CreativeWork/> ;
    schema:name "Locally Conformal Kähler Geometry"@en ;
    schema:productID "853260695" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/853260695#PublicationEvent/boston_ma_birkhauser_boston_imprint_birkhauser_1998> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/40961000#Agent/imprint> ; # Imprint
    schema:publisher <http://experiment.worldcat.org/entity/work/data/40961000#Agent/birkhauser_boston> ; # Birkhäuser Boston
    schema:publisher <http://experiment.worldcat.org/entity/work/data/40961000#Agent/birkhauser> ; # Birkhäuser
    schema:url <http://dx.doi.org/10.1007/978-1-4612-2026-8> ;
    schema:workExample <http://worldcat.org/isbn/9781461220268> ;
    schema:workExample <http://dx.doi.org/10.1007/978-1-4612-2026-8> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/853260695> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/40961000#Agent/birkhauser> # Birkhäuser
    a bgn:Agent ;
    schema:name "Birkhäuser" ;
    .

<http://experiment.worldcat.org/entity/work/data/40961000#Agent/birkhauser_boston> # Birkhäuser Boston
    a bgn:Agent ;
    schema:name "Birkhäuser Boston" ;
    .

<http://experiment.worldcat.org/entity/work/data/40961000#Person/dragomir_sorin> # Sorin Dragomir
    a schema:Person ;
    schema:familyName "Dragomir" ;
    schema:givenName "Sorin" ;
    schema:name "Sorin Dragomir" ;
    .

<http://experiment.worldcat.org/entity/work/data/40961000#Series/progress_in_mathematics> # Progress in Mathematics ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/853260695> ; # Locally Conformal Kähler Geometry
    schema:name "Progress in Mathematics ;" ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
    schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/940864> # Geometry
    a schema:Intangible ;
    schema:name "Geometry"@en ;
    .

<http://id.worldcat.org/fast/943477> # Global differential geometry
    a schema:Intangible ;
    schema:name "Global differential geometry"@en ;
    .

<http://viaf.org/viaf/115930330> # Liviu Ornea
    a schema:Person ;
    schema:familyName "Ornea" ;
    schema:givenName "Liviu" ;
    schema:name "Liviu Ornea" ;
    .

<http://worldcat.org/isbn/9781461220268>
    a schema:ProductModel ;
    schema:isbn "1461220262" ;
    schema:isbn "9781461220268" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.