skip to content
Long-term effects of metals in sewage sludge on soils, microorganisms and plants.
ClosePreview this item
Checking...

Long-term effects of metals in sewage sludge on soils, microorganisms and plants.

Author: SP McGrath Affiliation: Soil Science Department, Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts, UK.; AM Chaudri; KE Giller
Edition/Format: Article Article : English
Publication:Journal of industrial microbiology, 1995 Feb; 14(2): 94-104
Database:From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
Summary:
This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

More like this

 

&AllPage.SpinnerRetrieving;

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Article
All Authors / Contributors: SP McGrath Affiliation: Soil Science Department, Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts, UK.; AM Chaudri; KE Giller
ISSN:0169-4146
Language Note: English
Unique Identifier: 118100312
Awards:

Abstract:

This paper reviews the evidence for impacts of metals on the growth of selected plants and on the effects of metals on soil microbial activity and soil fertility in the long-term. Less is known about adverse long-term effects of metals on soil microorganisms than on crop yields and metal uptake. This is not surprising, since the effects of metals added to soils in sewage sludge are difficult to assess, and few long-term experiments exist. Controlled field experiments with sewage sludges exist in the UK, Sweden, Germany and the USA and the data presented here are from these long-term field experiments only. Microbial activity and populations of cyanobacteria, Rhizobium leguminosarum bv. trifolii, mycorrhizae and the total microbial biomass have been adversely affected by metal concentrations which, in some cases, are below the European Community's maximum allowable concentration limits for metals in sludge-treated soils. For example, N2-fixation by free living heterotrophic bacteria was found to be inhibited at soil metal concentrations of (mg kg-1): 127 Zn, 37 Cu, 21 Ni, 3.4 Cd, 52 Cr and 71 Pb. N2-fixation by free-living cyanobacteria was reduced by 50% at metal concentrations of (mg kg-1): 114 Zn, 33 Cu, 17 Ni, 2.9 Cd, 80 Cr and 40 Pb. Rhizobium leguminosarum bv. trifolii numbers decreased by several orders of magnitude at soil metal concentrations of (mg kg-1): 130-200 Zn, 27-48 Cu, 11-15 Ni, and 0.8-1.0 Cd. Soil texture and pH were found to influence the concentrations at which toxicity occurred to both microorganisms and plants. Higher pH, and increased contents of clay and organic carbon reduced metal toxicity considerably. The evidence suggests that adverse effects on soil microbial parameters were generally found at surprizingly modest concentrations of metals in soils. It is concluded that prevention of adverse effects on soil microbial processes and ultimately soil fertility, should be a factor which influences soil protection legislation.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

All user tags (2)

View most popular tags as: tag list | tag cloud

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.