skip to content
M-solid varieties of algebras Preview this item
ClosePreview this item
Checking...

M-solid varieties of algebras

Author: J Koppitz; Klaus Denecke
Publisher: New York : Springer, ©2006.
Series: Advances in mathematics (Springer Science+Business Media), v. 10.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:
"M-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of mathematical discourse that is applicable in several concrete situations. It applies the general theory to two classes  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: J Koppitz; Klaus Denecke
ISBN: 0387308040 9780387308043 0387308067 9780387308067
OCLC Number: 65427498
Description: xiii, 341 pages : illustrations ; 25 cm.
Contents: Preface Chapter 1 Basic Concepts 1.1 Subalgebras and Homomorphic Images 1.2 Direct and Subdirect Products 1.3 Term Algebras, Identities, Free Algebras 1.4 The Galois Connection (Id,Mod) Chapter 2 Closure Operators and Lattices 2.1 Closure Operators and Kernel Operators 2.2 Complete Sublattices of a Complete Lattice 2.3 Galois Connections and Complete Lattices 2.4 Galois Closed Subrelations 2.5 Conjugate Pairs of Additive Closure Operators Chapter 3 M-Hyperidentities and M-solid Varieties 3.1 M-Hyperidentities 3.2 The Closure Operators 3.3 M-Solid Varieties and their Characterization 3.4 Subvariety Lattices and Monoids of Hypersubstitutions 3.5 Derivation of M-Hyperidentities Chapter 4 Hyperidentities and Clone Identities 4.1 Menger Algebras of Rank n 4.2 The Clone of a Variety Chapter 5 Solid Varieties of Arbitrary Type 5.1 Rectangular Algebras 5.2 Solid Chains Chapter 6 Monoids of Hypersubstitutions 6.1 Basic Definitions 6.2 Injective and Bijective Hypersubstitutions 6.3 Finite Monoids of Hypersubstitutions of Type (2) 6.4 The Monoid of all Hypersubstitutions of Type (2) 6.5 Green's Relations on Hyp(2) 6.6 Idempotents in Hyp(2, 2) 6.7 The Order of Hypersubstitutions of Type (2, 2) 6.8 Green's Relations in Hyp(n, n) 6.9 The Monoid of Hypersubstitutions of Type (n) 6.10 Left-Seminearrings of Hypersubstitutions Chapter 7 M-Solid Varieties of Semigroups 7.1 Basic Concepts onM-Solid Varieties of Semigroups 7.2 Regular-solid Varieties of Semigroups 7.3 Solid Varieties of Semigroups 7.4 Pre-solid Varieties of Semigroups 7.5 Locally Finite and Finitely Based M-solid Varieties Chapter 8 M-solid Varieties of Semirings 8.1 Necessary Conditions for Solid Varieties of Semirings 8.2 The Minimal Solid Variety of Semirings 8.3 The Greatest Solid Variety of Semirings 8.4 The Lattice of all Solid Varieties of Semirings 8.5 Generalization of Normalizations 8.6 All Pre-solid Varieties of Semirings Bibliography Glossary Index
Series Title: Advances in mathematics (Springer Science+Business Media), v. 10.
Responsibility: by J. Koppitz, K. Denecke.
More information:

Abstract:

Offers an introduction to the fundamentals of the hyperequational theory of universal algebra, presenting the results on solid varieties of semirings and semigroups. This title intends to develop the  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/65427498> # M-solid varieties of algebras
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "65427498" ;
   library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
   schema:about <http://id.worldcat.org/fast/1112373> ; # Semirings (Mathematics)
   schema:about <http://id.worldcat.org/fast/804928> ; # Algebra, Universal
   schema:about <http://id.worldcat.org/fast/937325> ; # Galois modules (Algebra)
   schema:about <http://dewey.info/class/512/> ;
   schema:about <http://dewey.info/class/516.353/e22/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/52266222#Topic/modules_galoisiens> ; # Modules galoisiens
   schema:about <http://experiment.worldcat.org/entity/work/data/52266222#Topic/algebre_universelle> ; # Algèbre universelle
   schema:about <http://id.worldcat.org/fast/1164455> ; # Varieties (Universal algebra)
   schema:about <http://experiment.worldcat.org/entity/work/data/52266222#Topic/semi_anneaux_mathematiques> ; # Semi-anneaux (Mathématiques)
   schema:about <http://id.worldcat.org/fast/1112267> ; # Semigroups
   schema:about <http://experiment.worldcat.org/entity/work/data/52266222#Topic/classes_equationnelles> ; # Classes équationnelles
   schema:about <http://experiment.worldcat.org/entity/work/data/52266222#Topic/semi_groupes> ; # Semi-groupes
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/52266222#Person/denecke_klaus> ; # Klaus Denecke
   schema:copyrightYear "2006" ;
   schema:creator <http://viaf.org/viaf/12603185> ; # Jörg Koppitz
   schema:datePublished "2006" ;
   schema:description ""M-Solid Varieties of Algebras provides a complete and systematic introduction to the fundamentals of the hyperequational theory of universal algebra, offering the newest results on M-solid varieties of semirings and semigroups. The book aims to develop the theory of M-solid varieties as a system of mathematical discourse that is applicable in several concrete situations. It applies the general theory to two classes of algebraic structures, semigroups and semirings. Both these varieties and their subvarieties play an important role in computer science. A unique feature of this book is the use of Galois connections to integrate different topics. Galois connections form the abstract framework not only for classical and modern Galois theory, involving groups, fields and rings, but also for many other algebraic, topological, ordertheoretical, categorical and logical theories. This concept is used throughout the whole book, along with the related topics of closure operators, complete lattices, Galois closed subrelations and conjugate pairs of completely additive closure operators."--Publisher's website."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/52266222> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/52266222#Series/advances_in_mathematics_springer_science+business_media> ; # Advances in mathematics (Springer Science+Business Media) ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/52266222#Series/advances_in_mathematics> ; # Advances in mathematics ;
   schema:name "M-solid varieties of algebras"@en ;
   schema:productID "65427498" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/65427498#PublicationEvent/new_york_springer_2006> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/52266222#Agent/springer> ; # Springer
   schema:url <http://catdir.loc.gov/catdir/enhancements/fy0824/2005936714-t.html> ;
   schema:workExample <http://worldcat.org/isbn/9780387308067> ;
   schema:workExample <http://worldcat.org/isbn/9780387308043> ;
   umbel:isLike <http://d-nb.info/977468542> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/65427498> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
   schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/52266222#Person/denecke_klaus> # Klaus Denecke
    a schema:Person ;
   schema:familyName "Denecke" ;
   schema:givenName "Klaus" ;
   schema:name "Klaus Denecke" ;
    .

<http://experiment.worldcat.org/entity/work/data/52266222#Series/advances_in_mathematics> # Advances in mathematics ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/65427498> ; # M-solid varieties of algebras
   schema:name "Advances in mathematics ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/52266222#Series/advances_in_mathematics_springer_science+business_media> # Advances in mathematics (Springer Science+Business Media) ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/65427498> ; # M-solid varieties of algebras
   schema:name "Advances in mathematics (Springer Science+Business Media) ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/52266222#Topic/algebre_universelle> # Algèbre universelle
    a schema:Intangible ;
   schema:name "Algèbre universelle"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/52266222#Topic/classes_equationnelles> # Classes équationnelles
    a schema:Intangible ;
   schema:name "Classes équationnelles"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/52266222#Topic/modules_galoisiens> # Modules galoisiens
    a schema:Intangible ;
   schema:name "Modules galoisiens"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/52266222#Topic/semi_anneaux_mathematiques> # Semi-anneaux (Mathématiques)
    a schema:Intangible ;
   schema:name "Semi-anneaux (Mathématiques)"@fr ;
    .

<http://id.worldcat.org/fast/1112267> # Semigroups
    a schema:Intangible ;
   schema:name "Semigroups"@en ;
    .

<http://id.worldcat.org/fast/1112373> # Semirings (Mathematics)
    a schema:Intangible ;
   schema:name "Semirings (Mathematics)"@en ;
    .

<http://id.worldcat.org/fast/1164455> # Varieties (Universal algebra)
    a schema:Intangible ;
   schema:name "Varieties (Universal algebra)"@en ;
    .

<http://id.worldcat.org/fast/804928> # Algebra, Universal
    a schema:Intangible ;
   schema:name "Algebra, Universal"@en ;
    .

<http://id.worldcat.org/fast/937325> # Galois modules (Algebra)
    a schema:Intangible ;
   schema:name "Galois modules (Algebra)"@en ;
    .

<http://viaf.org/viaf/12603185> # Jörg Koppitz
    a schema:Person ;
   schema:familyName "Koppitz" ;
   schema:givenName "Jörg" ;
   schema:givenName "J." ;
   schema:name "Jörg Koppitz" ;
    .

<http://worldcat.org/isbn/9780387308043>
    a schema:ProductModel ;
   schema:isbn "0387308040" ;
   schema:isbn "9780387308043" ;
    .

<http://worldcat.org/isbn/9780387308067>
    a schema:ProductModel ;
   schema:isbn "0387308067" ;
   schema:isbn "9780387308067" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.