skip to content
Machine learning: ECML-93 : European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993 : proceedings Preview this item
ClosePreview this item
Checking...

Machine learning: ECML-93 : European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993 : proceedings

Author: Pavel B Brazdil
Publisher: Berlin ; London : Springer-Verlag, ©1993.
Series: Lecture notes in computer science., Lecture notes in artificial intelligence ;, 667.
Edition/Format:   Print book : Conference publication : EnglishView all editions and formats
Summary:

Contains the proceedings of the European Conference on Machine Learning (ECML-93). The aim of these conferences is to provide a platform for presenting the latest results in machine learning. This  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Conference papers and proceedings
Kongreß
Congresses
Material Type: Conference publication, Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Pavel B Brazdil
ISBN: 0387566023 9780387566023 3540566023 9783540566021
OCLC Number: 264982473
Description: xii, 469 pages ; 25 cm.
Contents: FOIL: A Midterm Report / J. R. Quinlan and R. M. Cameron-Jones --
Inductive Logic Programming: Derivations, Successes and Shortcomings / S. Muggleton --
Inductive Logic Programming --
Two Methods for Improving Inductive Logic Programming Systems / I. Stahl, T. B. Tausend and R. Wirth --
Generalization under Implication by Using Or-Introduction / P. Idestam-Almquist --
On the Proper Definition of Minimality in Specialization and Theory Revision / S. Wrobel --
Predicate Invention in Inductive Data Engineering / P. A. Flach --
Subsumption and Refinement in Model Inference / P. R. J. van der Laag and S.-H. Nienhuys-Cheng --
Some Lower Bounds for the Computational Complexity of Inductive Logic Programming / J.-U. Kietz --
Improving Example-Guided Unfolding / H. Bostrom --
Probabilistic Approaches to Learning --
Bayes and Pseudo-Bayes Estimates of Conditional Probabilities and Their Reliability / J. Cussens --
Induction of Recursive Bayesian Classifiers / P. Langley --
Inductive Learning --
Decision Tree Pruning as a Search in the State Space / F. Esposito, D. Malerba and G. Semeraro --
Controlled Redundancy in Incremental Rule Learning / L. Torgo --
Getting Order Independence in Incremental Learning / A. Cornuejols --
Feature Selection Using Rough Sets Theory / M. Modrzejewski --
Learning in Dynamic Environments --
Effective Learning in Dynamic Environments by Explicit Context Tracking / G. Widmer and M. Kubat --
COBBIT --
A Control Procedure for COBWEB in the Presence of Concept Drift / F. Kilander and C. G. Jansson --
Genetic Algorithms --
Genetic Algorithms for Protein Tertiary Structure Prediction / S. Schulze-Kremer --
SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts / G. Venturini --
SAMIA: A Bottom-up Learning Method Using a Simulated Annealing Algorithm / P. Brezellec and H. Soldano --
Inductive Logic Programming --
Predicate Invention in ILP --
an Overview / I. Stahl --
Functional Inductive Logic Programming with Queries to the User / F. Bergadano and D. Gunetti --
A Note on Refinement Operators / T. Niblett --
An Iterative and Bottom-up Procedure for Proving-by-Example / M. Hagiya --
Learnability --
Learnability of Constrained Logic Programs / S. Dzeroski, S. Muggleton and S. Russell --
Complexity Dimensions and Learnability / S.-H. Nienhuys-Cheng and M. Polman --
Can Complexity Theory Benefit from Learning Theory? / T. Hegedus --
Learning from Time Dependent Data --
Learning Domain Theories Using Abstract Background Knowledge / P. Clark and S. Matwin --
Discovering Patterns in EEG-Signals: Comparative Study of a Few Methods / M. Kubat, D. Flotzinger and G. Pfurtscheller --
Learning to Control Dynamic Systems with Automatic Quantization / C. X. Ling and R. Buchal --
Inductive Learning and Applications --
Refinement of Rule Sets with JoJo / D. Fensel and M. Wiese --
Rule Combination in Inductive Learning / L. Torgo --
Using Heuristics to Speed up Induction on Continuous-Valued Attributes / G. Seidelmann --
Integrating Models of Knowledge and Machine Learning / J.-G. Ganascia, J. Thomas and P. Laublet --
Exploiting Context when Learning to Classify / P. D. Turney --
IDDD: An Inductive, Domain Dependent Decision Algorithm / L. Gaga, V. Moustakis, G. Charissis and S. Orphanoudakis --
An Application of Machine Learning in the Domain of Loan Analysis / J. Ferreira, J. Correia, T. Jamet and E. Costa --
Neural Network Learning --
Extraction of Knowledge from Data using Constrained Neural Networks / R. Kane, I. Tchoumatchenko and M. Milgram --
Integrated Learning Architectures / E. Plaza, A. Aamodt, A. Ram, W. van de Velde and M. van Someren --
An Overview of Evolutionary Computation / W. M. Spears, K. A. De Jong, T. Back, D. B. Fogel and H. de Garis --
ML Techniques and Text Analysis / P. Adriaans.
Series Title: Lecture notes in computer science., Lecture notes in artificial intelligence ;, 667.
Responsibility: Pavel B. Brazdil, ed.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/264982473> # Machine learning: ECML-93 : European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993 : proceedings
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "264982473" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
   library:placeOfPublication <http://dbpedia.org/resource/London> ; # London
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/364386249#Place/berlin> ; # Berlin
   schema:about <http://experiment.worldcat.org/entity/work/data/364386249#Topic/maschinelles_lernen> ; # Maschinelles Lernen
   schema:about <http://experiment.worldcat.org/entity/work/data/364386249#Topic/learning_psychology_of> ; # Learning, Psychology of
   schema:about <http://experiment.worldcat.org/entity/work/data/364386249#Place/wien_1992> ; # Wien <1992>
   schema:about <http://id.worldcat.org/fast/1004795> ; # Machine learning
   schema:about <http://experiment.worldcat.org/entity/work/data/364386249#Topic/machine_learning> ; # Machine learning
   schema:about <http://id.worldcat.org/fast/970736> ; # Induction (Logic)
   schema:about <http://id.worldcat.org/fast/995009> ; # Learning, Psychology of
   schema:about <http://dewey.info/class/006.31/> ;
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://viaf.org/viaf/69605839> ; # Pavel B. Brazdil
   schema:copyrightYear "1993" ;
   schema:creator <http://experiment.worldcat.org/entity/work/data/364386249#Meeting/european_conference_on_machine_learning_1993_vienna_austria> ; # European Conference on Machine Learning (1993 : Vienna, Austria)
   schema:datePublished "1993" ;
   schema:description "FOIL: A Midterm Report / J. R. Quinlan and R. M. Cameron-Jones -- Inductive Logic Programming: Derivations, Successes and Shortcomings / S. Muggleton -- Inductive Logic Programming -- Two Methods for Improving Inductive Logic Programming Systems / I. Stahl, T. B. Tausend and R. Wirth -- Generalization under Implication by Using Or-Introduction / P. Idestam-Almquist -- On the Proper Definition of Minimality in Specialization and Theory Revision / S. Wrobel -- Predicate Invention in Inductive Data Engineering / P. A. Flach -- Subsumption and Refinement in Model Inference / P. R. J. van der Laag and S.-H. Nienhuys-Cheng -- Some Lower Bounds for the Computational Complexity of Inductive Logic Programming / J.-U. Kietz -- Improving Example-Guided Unfolding / H. Bostrom -- Probabilistic Approaches to Learning -- Bayes and Pseudo-Bayes Estimates of Conditional Probabilities and Their Reliability / J. Cussens -- Induction of Recursive Bayesian Classifiers / P. Langley -- Inductive Learning -- Decision Tree Pruning as a Search in the State Space / F. Esposito, D. Malerba and G. Semeraro -- Controlled Redundancy in Incremental Rule Learning / L. Torgo -- Getting Order Independence in Incremental Learning / A. Cornuejols -- Feature Selection Using Rough Sets Theory / M. Modrzejewski -- Learning in Dynamic Environments -- Effective Learning in Dynamic Environments by Explicit Context Tracking / G. Widmer and M. Kubat -- COBBIT -- A Control Procedure for COBWEB in the Presence of Concept Drift / F. Kilander and C. G. Jansson -- Genetic Algorithms -- Genetic Algorithms for Protein Tertiary Structure Prediction / S. Schulze-Kremer -- SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes based Concepts / G. Venturini -- SAMIA: A Bottom-up Learning Method Using a Simulated Annealing Algorithm / P. Brezellec and H. Soldano -- Inductive Logic Programming -- Predicate Invention in ILP -- an Overview / I. Stahl -- Functional Inductive Logic Programming with Queries to the User / F. Bergadano and D. Gunetti -- A Note on Refinement Operators / T. Niblett -- An Iterative and Bottom-up Procedure for Proving-by-Example / M. Hagiya -- Learnability -- Learnability of Constrained Logic Programs / S. Dzeroski, S. Muggleton and S. Russell -- Complexity Dimensions and Learnability / S.-H. Nienhuys-Cheng and M. Polman -- Can Complexity Theory Benefit from Learning Theory? / T. Hegedus -- Learning from Time Dependent Data -- Learning Domain Theories Using Abstract Background Knowledge / P. Clark and S. Matwin -- Discovering Patterns in EEG-Signals: Comparative Study of a Few Methods / M. Kubat, D. Flotzinger and G. Pfurtscheller -- Learning to Control Dynamic Systems with Automatic Quantization / C. X. Ling and R. Buchal -- Inductive Learning and Applications -- Refinement of Rule Sets with JoJo / D. Fensel and M. Wiese -- Rule Combination in Inductive Learning / L. Torgo -- Using Heuristics to Speed up Induction on Continuous-Valued Attributes / G. Seidelmann -- Integrating Models of Knowledge and Machine Learning / J.-G. Ganascia, J. Thomas and P. Laublet -- Exploiting Context when Learning to Classify / P. D. Turney -- IDDD: An Inductive, Domain Dependent Decision Algorithm / L. Gaga, V. Moustakis, G. Charissis and S. Orphanoudakis -- An Application of Machine Learning in the Domain of Loan Analysis / J. Ferreira, J. Correia, T. Jamet and E. Costa -- Neural Network Learning -- Extraction of Knowledge from Data using Constrained Neural Networks / R. Kane, I. Tchoumatchenko and M. Milgram -- Integrated Learning Architectures / E. Plaza, A. Aamodt, A. Ram, W. van de Velde and M. van Someren -- An Overview of Evolutionary Computation / W. M. Spears, K. A. De Jong, T. Back, D. B. Fogel and H. de Garis -- ML Techniques and Text Analysis / P. Adriaans."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/364386249> ;
   schema:genre "Kongreß"@en ;
   schema:genre "Conference publication"@en ;
   schema:genre "Conference papers and proceedings"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/364386249#Series/lecture_notes_in_computer_science> ; # Lecture notes in computer science.
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/364386249#Series/lecture_notes_in_computer_science_lecture_notes_in_artificial_intelligence> ; # Lecture notes in computer science. Lecture notes in artificial intelligence ;
   schema:name "Machine learning: ECML-93 : European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993 : proceedings"@en ;
   schema:productID "264982473" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/264982473#PublicationEvent/berlin_london_springer_verlag_1993> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/364386249#Agent/springer_verlag> ; # Springer-Verlag
   schema:url <http://swbplus.bsz-bw.de/bsz032782799cov.htm> ;
   schema:workExample <http://worldcat.org/isbn/9780387566023> ;
   schema:workExample <http://worldcat.org/isbn/9783540566021> ;
   umbel:isLike <http://d-nb.info/930449312> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/264982473> ;
    .


Related Entities

<http://dbpedia.org/resource/London> # London
    a schema:Place ;
   schema:name "London" ;
    .

<http://experiment.worldcat.org/entity/work/data/364386249#Agent/springer_verlag> # Springer-Verlag
    a bgn:Agent ;
   schema:name "Springer-Verlag" ;
    .

<http://experiment.worldcat.org/entity/work/data/364386249#Meeting/european_conference_on_machine_learning_1993_vienna_austria> # European Conference on Machine Learning (1993 : Vienna, Austria)
    a bgn:Meeting, schema:Event ;
   schema:location <http://experiment.worldcat.org/entity/work/data/364386249#Place/vienna_austria> ; # Vienna, Austria)
   schema:name "European Conference on Machine Learning (1993 : Vienna, Austria)" ;
    .

<http://experiment.worldcat.org/entity/work/data/364386249#Place/vienna_austria> # Vienna, Austria)
    a schema:Place ;
   schema:name "Vienna, Austria)" ;
    .

<http://experiment.worldcat.org/entity/work/data/364386249#Series/lecture_notes_in_computer_science> # Lecture notes in computer science.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/264982473> ; # Machine learning: ECML-93 : European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993 : proceedings
   schema:name "Lecture notes in computer science." ;
    .

<http://experiment.worldcat.org/entity/work/data/364386249#Series/lecture_notes_in_computer_science_lecture_notes_in_artificial_intelligence> # Lecture notes in computer science. Lecture notes in artificial intelligence ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/264982473> ; # Machine learning: ECML-93 : European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993 : proceedings
   schema:name "Lecture notes in computer science. Lecture notes in artificial intelligence ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/364386249#Topic/maschinelles_lernen> # Maschinelles Lernen
    a schema:Intangible ;
   schema:name "Maschinelles Lernen"@en ;
    .

<http://id.worldcat.org/fast/1004795> # Machine learning
    a schema:Intangible ;
   schema:name "Machine learning"@en ;
    .

<http://id.worldcat.org/fast/970736> # Induction (Logic)
    a schema:Intangible ;
   schema:name "Induction (Logic)"@en ;
    .

<http://id.worldcat.org/fast/995009> # Learning, Psychology of
    a schema:Intangible ;
   schema:name "Learning, Psychology of"@en ;
    .

<http://viaf.org/viaf/69605839> # Pavel B. Brazdil
    a schema:Person ;
   schema:birthDate "1945" ;
   schema:familyName "Brazdil" ;
   schema:givenName "Pavel B." ;
   schema:name "Pavel B. Brazdil" ;
    .

<http://worldcat.org/isbn/9780387566023>
    a schema:ProductModel ;
   schema:isbn "0387566023" ;
   schema:isbn "9780387566023" ;
    .

<http://worldcat.org/isbn/9783540566021>
    a schema:ProductModel ;
   schema:isbn "3540566023" ;
   schema:isbn "9783540566021" ;
    .

<http://www.worldcat.org/title/-/oclc/264982473>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/264982473> ; # Machine learning: ECML-93 : European Conference on Machine Learning, Vienna, Austria, April 5-7, 1993 : proceedings
   schema:dateModified "2017-10-23" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.