skip to content
Machine learning : the art and science of algorithms that make sense of data Preview this item
ClosePreview this item
Checking...

Machine learning : the art and science of algorithms that make sense of data

Author: Peter A Flach
Publisher: Cambridge ; New York : Cambridge University Press, 2012.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Textbooks
Manuels d'enseignement supérieur
Additional Physical Format: Print version:
Flach, Peter A.
Machine learning.
Cambridge ; New York : Cambridge University Press, 2012
(DLC) 2012289353
(OCoLC)795181906
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Peter A Flach
ISBN: 9781139571227 1139571222 9781139569415 1139569414 9780511973000 0511973004 9781139570312 1139570315 1107096391 9781107096394 9781139572972 1139572970
OCLC Number: 817870722
Notes: 8.2 Neighbours and exemplars.
Description: 1 online resource (xvii, 396 pages) : color illustrations
Contents: Cover; MACHINE LEARNING: The Art and Science of Algorithms that Make Sense of Data; Title; Copyright; Dedication; Brief Contents; Contents; Preface; How to read the book; Acknowledgements; Prologue: A machine learning sampler; CHAPTER 1 The ingredients of machine learning; 1.1 Tasks: the problems that can be solved with machine learning; Looking for structure; Evaluating performance on a task; 1.2 Models: the output of machine learning; Geometric models; Probabilistic models; Logical models; Grouping and grading; 1.3 Features: the workhorses of machine learning; Two uses of features. Feature construction and transformationInteraction between features; 1.4 Summary and outlook; What you'll find in the rest of the book; CHAPTER 2 Binary classification and related tasks; 2.1 Classification; Assessing classification performance; Visualising classification performance; 2.2 Scoring and ranking; Assessing and visualising ranking performance; Turning rankers into classifiers; 2.3 Class probability estimation; Assessing class probability estimates; Turning rankers into class probability estimators; 2.4 Binary classification and related tasks: Summary and further reading. CHAPTER 3 Beyond binary classification3.1 Handling more than two classes; Multi-class classification; Multi-class scores and probabilities; 3.2 Regression; 3.3 Unsupervised and descriptive learning; Predictive and descriptive clustering; Other descriptive models; 3.4 Beyond binary classification: Summary and further reading; CHAPTER 4 Concept learning; 4.1 The hypothesis space; Least general generalisation; Internal disjunction; 4.2 Paths through the hypothesis space; Most general consistent hypotheses; Closed concepts; 4.3 Beyond conjunctive concepts; Using first-order logic. 4.4 Learnability4.5 Concept learning: Summary and further reading; CHAPTER 5 Tree models; 5.1 Decision trees; 5.2 Ranking and probability estimation trees; Sensitivity to skewed class distributions; 5.3 Tree learning as variance reduction; Regression trees; Clustering trees; 5.4 Tree models: Summary and further reading; CHAPTER 6 Rule models; 6.1 Learning ordered rule lists; Rule lists for ranking and probability estimation; 6.2 Learning unordered rule sets; Rule sets for ranking and probability estimation; A closer look at rule overlap; 6.3 Descriptive rule learning. Rule learning for subgroup discoveryAssociation rule mining; 6.4 First-order rule learning; 6.5 Rule models: Summary and further reading; CHAPTER 7 Linear models; 7.1 The least-squares method; Multivariate linear regression; Regularised regression; Using least-squares regression for classification; 7.2 The perceptron; 7.3 Support vector machines; Soft margin SVM; 7.4 Obtaining probabilities from linear classifiers; 7.5 Going beyond linearity with kernel methods; 7.6 Linear models: Summary and further reading; CHAPTER 8 Distance-based models; 8.1 So many roads.
Responsibility: Peter Flach.

Abstract:

Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook.  Read more...

Reviews

Editorial reviews

Publisher Synopsis

"This textbook is clearly written and well organized. Starting from the basics, the author skillfully guides the reader through his learning process by providing useful facts and insight into the Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/817870722> # Machine learning : the art and science of algorithms that make sense of data
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
    library:oclcnum "817870722" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1119166740#Place/cambridge> ; # Cambridge
    schema:about <http://experiment.worldcat.org/entity/work/data/1119166740#Topic/computers_intelligence_ai_&_semantics> ; # COMPUTERS--Intelligence (AI) & Semantics
    schema:about <http://experiment.worldcat.org/entity/work/data/1119166740#Topic/computers_enterprise_applications_business_intelligence_tools> ; # COMPUTERS--Enterprise Applications--Business Intelligence Tools
    schema:about <http://experiment.worldcat.org/entity/work/data/1119166740#Topic/computers_programming_algorithms> ; # COMPUTERS--Programming--Algorithms
    schema:about <http://experiment.worldcat.org/entity/work/data/1119166740#Topic/apprentissage_automatique> ; # Apprentissage automatique
    schema:about <http://id.loc.gov/authorities/subjects/sh85079324> ; # Machine learning
    schema:about <http://dewey.info/class/004.67/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1119166740#Topic/mathematics_general> ; # MATHEMATICS--General
    schema:about <http://id.worldcat.org/fast/1004795> ; # Machine learning
    schema:about <http://experiment.worldcat.org/entity/work/data/1119166740#Topic/mathematics_combinatorics> ; # MATHEMATICS--Combinatorics
    schema:bookFormat schema:EBook ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/1119166740#Person/flach_peter_a> ; # Peter A. Flach
    schema:datePublished "2012" ;
    schema:description "Covering all the main approaches in state-of-the-art machine learning research, this will set a new standard as an introductory textbook."@en ;
    schema:description "Cover; MACHINE LEARNING: The Art and Science of Algorithms that Make Sense of Data; Title; Copyright; Dedication; Brief Contents; Contents; Preface; How to read the book; Acknowledgements; Prologue: A machine learning sampler; CHAPTER 1 The ingredients of machine learning; 1.1 Tasks: the problems that can be solved with machine learning; Looking for structure; Evaluating performance on a task; 1.2 Models: the output of machine learning; Geometric models; Probabilistic models; Logical models; Grouping and grading; 1.3 Features: the workhorses of machine learning; Two uses of features."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1119166740> ;
    schema:genre "Electronic books"@en ;
    schema:genre "Textbooks"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/795181906> ;
    schema:name "Machine learning : the art and science of algorithms that make sense of data"@en ;
    schema:productID "817870722" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/817870722#PublicationEvent/cambridge_new_york_cambridge_university_press_2012> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1119166740#Agent/cambridge_university_press> ; # Cambridge University Press
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=480404> ;
    schema:url <http://dx.doi.org/10.1017/CBO9780511973000> ;
    schema:url <http://site.ebrary.com/id/10614477> ;
    schema:url <http://www.myilibrary.com?id=402807> ;
    schema:workExample <http://worldcat.org/isbn/9781107096394> ;
    schema:workExample <http://worldcat.org/isbn/9781139571227> ;
    schema:workExample <http://worldcat.org/isbn/9781139570312> ;
    schema:workExample <http://worldcat.org/isbn/9780511973000> ;
    schema:workExample <http://worldcat.org/isbn/9781139569415> ;
    schema:workExample <http://worldcat.org/isbn/9781139572972> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/817870722> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/1119166740#Agent/cambridge_university_press> # Cambridge University Press
    a bgn:Agent ;
    schema:name "Cambridge University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/1119166740#Person/flach_peter_a> # Peter A. Flach
    a schema:Person ;
    schema:familyName "Flach" ;
    schema:givenName "Peter A." ;
    schema:name "Peter A. Flach" ;
    .

<http://experiment.worldcat.org/entity/work/data/1119166740#Topic/apprentissage_automatique> # Apprentissage automatique
    a schema:Intangible ;
    schema:name "Apprentissage automatique"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/1119166740#Topic/computers_enterprise_applications_business_intelligence_tools> # COMPUTERS--Enterprise Applications--Business Intelligence Tools
    a schema:Intangible ;
    schema:name "COMPUTERS--Enterprise Applications--Business Intelligence Tools"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1119166740#Topic/computers_intelligence_ai_&_semantics> # COMPUTERS--Intelligence (AI) & Semantics
    a schema:Intangible ;
    schema:name "COMPUTERS--Intelligence (AI) & Semantics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1119166740#Topic/computers_programming_algorithms> # COMPUTERS--Programming--Algorithms
    a schema:Intangible ;
    schema:name "COMPUTERS--Programming--Algorithms"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1119166740#Topic/mathematics_combinatorics> # MATHEMATICS--Combinatorics
    a schema:Intangible ;
    schema:name "MATHEMATICS--Combinatorics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1119166740#Topic/mathematics_general> # MATHEMATICS--General
    a schema:Intangible ;
    schema:name "MATHEMATICS--General"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85079324> # Machine learning
    a schema:Intangible ;
    schema:name "Machine learning"@en ;
    .

<http://id.worldcat.org/fast/1004795> # Machine learning
    a schema:Intangible ;
    schema:name "Machine learning"@en ;
    .

<http://worldcat.org/isbn/9780511973000>
    a schema:ProductModel ;
    schema:isbn "0511973004" ;
    schema:isbn "9780511973000" ;
    .

<http://worldcat.org/isbn/9781107096394>
    a schema:ProductModel ;
    schema:isbn "1107096391" ;
    schema:isbn "9781107096394" ;
    .

<http://worldcat.org/isbn/9781139569415>
    a schema:ProductModel ;
    schema:isbn "1139569414" ;
    schema:isbn "9781139569415" ;
    .

<http://worldcat.org/isbn/9781139570312>
    a schema:ProductModel ;
    schema:isbn "1139570315" ;
    schema:isbn "9781139570312" ;
    .

<http://worldcat.org/isbn/9781139571227>
    a schema:ProductModel ;
    schema:isbn "1139571222" ;
    schema:isbn "9781139571227" ;
    .

<http://worldcat.org/isbn/9781139572972>
    a schema:ProductModel ;
    schema:isbn "1139572970" ;
    schema:isbn "9781139572972" ;
    .

<http://www.worldcat.org/oclc/795181906>
    a schema:CreativeWork ;
    rdfs:label "Machine learning." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/817870722> ; # Machine learning : the art and science of algorithms that make sense of data
    .

<http://www.worldcat.org/title/-/oclc/817870722>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/817870722> ; # Machine learning : the art and science of algorithms that make sense of data
    schema:dateModified "2016-09-09" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.