skip to content
Manifolds all of whose Geodesics are Closed Preview this item
ClosePreview this item
Checking...

Manifolds all of whose Geodesics are Closed

Author: Arthur L Besse
Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 1978.
Series: Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics, 93.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Arthur L Besse
ISBN: 9783642618765 3642618766 9783540081586 3540081585
OCLC Number: 851800260
Description: 1 online resource (ix, 262 pages 71 illustrations).
Contents: 0. Introduction --
A. Motivation and History --
B. Organization and Contents --
C. What is New in this Book? --
D. What are the Main Problems Today? --
1. Basic Facts about the Geodesic Flow --
A. Summary --
B. Generalities on Vector Bundles --
C. The Cotangent Bundle --
D. The Double Tangent Bundle --
E. Riemannian Metrics --
F. Calculus of Variations --
G. The Geodesic Flow --
H. Connectors --
I. Covariant Derivatives --
J. Jacobi Fields --
K. Riemannian Geometry of the Tangent Bundle --
L. Formulas for the First and Second Variations of the Length of Curves --
M. Canonical Measures of Riemannian Manifolds --
2. The Manifold of Geodesics --
A. Summary --
B. The Manifold of Geodesics --
C. The Manifold of Geodesics as a Symplectic Manifold --
D. The Manifold of Geodesics as a Riemannian Manifold --
3. Compact Symmetric Spaces of Rank one From a Geometric Point of View --
A. Introduction --
B. The Projective Spaces as Base Spaces of the Hopf Fibrations --
C. The Projective Spaces as Symmetric Spaces --
D. The Hereditary Properties of Projective Spaces --
E. The Geodesics of Projective Spaces --
F. The Topology of Projective Spaces --
G. The Cayley Projective Plane --
4. Some Examples of C- and P-Manifolds: Zoll and Tannery Surfaces --
A. Introduction --
B. Characterization of P-Metrics of Revolution on S2 --
C. Tannery Surfaces and Zoll Surfaces Isometrically Embedded in (IR3, can) --
D. Geodesics on Zoll Surfaces of Revolution --
E. Higher Dimensional Analogues of Zoll metrics on S2 --
F. On Conformal Deformations of P-Manifolds: A. Weinstein's Result --
G. The Radon Transform on (S2, can) --
H.V. Guillemin's Proof of Funk's Claim --
5. Blaschke Manifolds and Blaschke's Conjecture --
A. Summary --
B. Metric Properties of a Riemannian Manifold --
C. The Allamigeon-Warner Theorem --
D. Pointed Blaschke Manifolds and Blaschke Manifolds --
E. Some Properties of Blaschke Manifolds --
F. Blaschke's Conjecture --
G. The Kähler Case --
H. An Infinitesimal Blaschke Conjecture --
6. Harmonic Manifolds --
A. Introduction --
B. Various Definitions, Equivalences --
C. Infinitesimally Harmonic Manifolds, Curvature Conditions --
D. Implications of Curvature Conditions --
E. Harmonic Manifolds of Dimension 4 --
F. Globally Harmonic Manifolds: Allamigeon's Theorem --
G. Strongly Harmonic Manifolds --
7. On the Topology of SC- and P-Manifolds --
A. Introduction4 --
B. Definitions --
C. Examples and Counter-Examples --
D. Bott-Samelson Theorem (C-Manifolds) --
E. P-Manifolds --
F. Homogeneous SC-Manifolds --
G. Questions --
H. Historical Note --
8. The Spectrum of P-Manifolds --
A. Summary --
B. Introduction --
C. Wave Front Sets and Sobolev Spaces --
D. Harmonic Analysis on Riemannian Manifolds --
E. Propagation of Singularities --
F. Proof of the Theorem 8. 9 (J. Duistermaat and V. Guillemin) --
G.A. Weinstein's result --
H. On the First Eigenvalue?1=?12 --
Appendix A. Foliations by Geodesic Circles --
I.A.W. Wadsley's Theorem --
II. Foliations With All Leaves Compact --
Appendix B. Sturm-Liouville Equations all of whose Solutions are Periodic after F. Neuman --
I. Summary --
II. Periodic Geodesics and the Sturm-Liouville Equation --
III. Sturm-Liouville Equations all of whose Solutions are Periodic --
IV. Back to Geometry with Some Examples and Remarks --
Appendix C. Examples of Pointed Blaschke Manifolds --
I. Introduction --
II. A. Weinstein's Construction --
III. Some Applications --
Appendix D. Blaschke's Conjecture for Spheres --
I. Results --
II. Some Lemmas --
III. Proof of Theorem D.4 --
Appendix E. An Inequality Arising in Geometry --
Notation Index.
Series Title: Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics, 93.
Responsibility: by Arthur L. Besse.

Abstract:

X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: {laquo}Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: {laquo}Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail ...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/851800260> # Manifolds all of whose Geodesics are Closed
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
   library:oclcnum "851800260" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/334943#Place/berlin_heidelberg> ; # Berlin, Heidelberg
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
   schema:about <http://dewey.info/class/516.36/e23/> ;
   schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
   schema:about <http://id.worldcat.org/fast/943477> ; # Global differential geometry
   schema:bookFormat schema:EBook ;
   schema:creator <http://viaf.org/viaf/24679276> ; # Arthur L. Besse
   schema:datePublished "1978" ;
   schema:description "X 1 O S R Cher lecteur, J'entre bien tard dans la sphere etroite des ecrivains au double alphabet, moi qui, il y a plus de quarante ans deja, avais accueilli sur mes terres un general epris de mathematiques. JI m'avait parle de ses projets grandioses en promettant d'ailleurs de m'envoyer ses ouvrages de geometrie. Je suis entiche de geometrie et c'est d'elle dontje voudrais vous parler, oh! certes pas de toute la geometrie, mais de celle que fait l'artisan qui taille, burine, amene, gauchit, peaufine les formes. Mon interet pour le probleme dont je veux vous entretenir ici, je le dois a un ami ebeniste. En effet comme je rendais un jour visite il cet ami, je le trouvai dans son atelier affaire a un tour. Il se retourna bientot, puis, rayonnant, me tendit une sorte de toupie et me dit: {laquo}Monsieur Besse, vous qui calculez les formes avec vos grimoires, que pensez-vous de ceci?)) Je le regardai interloque. Il poursuivit: {laquo}Regardez! Si vous prenez ce collier de laine et si vous le maintenez fermement avec un doigt place n'importe ou sur la toupie, eh bien! la toupie passera toujours juste en son interieur, sans laisser le moindre espace.)) Je rentrai chez moi, fort etonne, car sa toupie etait loin d'etre une boule. Je me mis alors au travail ..."@en ;
   schema:description "0. Introduction -- A. Motivation and History -- B. Organization and Contents -- C. What is New in this Book? -- D. What are the Main Problems Today? -- 1. Basic Facts about the Geodesic Flow -- A. Summary -- B. Generalities on Vector Bundles -- C. The Cotangent Bundle -- D. The Double Tangent Bundle -- E. Riemannian Metrics -- F. Calculus of Variations -- G. The Geodesic Flow -- H. Connectors -- I. Covariant Derivatives -- J. Jacobi Fields -- K. Riemannian Geometry of the Tangent Bundle -- L. Formulas for the First and Second Variations of the Length of Curves -- M. Canonical Measures of Riemannian Manifolds -- 2. The Manifold of Geodesics -- A. Summary -- B. The Manifold of Geodesics -- C. The Manifold of Geodesics as a Symplectic Manifold -- D. The Manifold of Geodesics as a Riemannian Manifold -- 3. Compact Symmetric Spaces of Rank one From a Geometric Point of View -- A. Introduction -- B. The Projective Spaces as Base Spaces of the Hopf Fibrations -- C. The Projective Spaces as Symmetric Spaces -- D. The Hereditary Properties of Projective Spaces -- E. The Geodesics of Projective Spaces -- F. The Topology of Projective Spaces -- G. The Cayley Projective Plane -- 4. Some Examples of C- and P-Manifolds: Zoll and Tannery Surfaces -- A. Introduction -- B. Characterization of P-Metrics of Revolution on S2 -- C. Tannery Surfaces and Zoll Surfaces Isometrically Embedded in (IR3, can) -- D. Geodesics on Zoll Surfaces of Revolution -- E. Higher Dimensional Analogues of Zoll metrics on S2 -- F. On Conformal Deformations of P-Manifolds: A. Weinstein's Result -- G. The Radon Transform on (S2, can) -- H.V. Guillemin's Proof of Funk's Claim -- 5. Blaschke Manifolds and Blaschke's Conjecture -- A. Summary -- B. Metric Properties of a Riemannian Manifold -- C. The Allamigeon-Warner Theorem -- D. Pointed Blaschke Manifolds and Blaschke Manifolds -- E. Some Properties of Blaschke Manifolds -- F. Blaschke's Conjecture -- G. The Kähler Case -- H. An Infinitesimal Blaschke Conjecture -- 6. Harmonic Manifolds -- A. Introduction -- B. Various Definitions, Equivalences -- C. Infinitesimally Harmonic Manifolds, Curvature Conditions -- D. Implications of Curvature Conditions -- E. Harmonic Manifolds of Dimension 4 -- F. Globally Harmonic Manifolds: Allamigeon's Theorem -- G. Strongly Harmonic Manifolds -- 7. On the Topology of SC- and P-Manifolds -- A. Introduction4 -- B. Definitions -- C. Examples and Counter-Examples -- D. Bott-Samelson Theorem (C-Manifolds) -- E. P-Manifolds -- F. Homogeneous SC-Manifolds -- G. Questions -- H. Historical Note -- 8. The Spectrum of P-Manifolds -- A. Summary -- B. Introduction -- C. Wave Front Sets and Sobolev Spaces -- D. Harmonic Analysis on Riemannian Manifolds -- E. Propagation of Singularities -- F. Proof of the Theorem 8. 9 (J. Duistermaat and V. Guillemin) -- G.A. Weinstein's result -- H. On the First Eigenvalue?1=?12 -- Appendix A. Foliations by Geodesic Circles -- I.A.W. Wadsley's Theorem -- II. Foliations With All Leaves Compact -- Appendix B. Sturm-Liouville Equations all of whose Solutions are Periodic after F. Neuman -- I. Summary -- II. Periodic Geodesics and the Sturm-Liouville Equation -- III. Sturm-Liouville Equations all of whose Solutions are Periodic -- IV. Back to Geometry with Some Examples and Remarks -- Appendix C. Examples of Pointed Blaschke Manifolds -- I. Introduction -- II. A. Weinstein's Construction -- III. Some Applications -- Appendix D. Blaschke's Conjecture for Spheres -- I. Results -- II. Some Lemmas -- III. Proof of Theorem D.4 -- Appendix E. An Inequality Arising in Geometry -- Notation Index."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/334943> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/334943#Series/ergebnisse_der_mathematik_und_ihrer_grenzgebiete_a_series_of_modern_surveys_in_mathematics> ; # Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics ;
   schema:isPartOf <http://worldcat.org/issn/0071-1136> ; # Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics,
   schema:isSimilarTo <http://worldcat.org/entity/work/data/334943#CreativeWork/> ;
   schema:name "Manifolds all of whose Geodesics are Closed"@en ;
   schema:productID "851800260" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/851800260#PublicationEvent/berlin_heidelberg_springer_berlin_heidelberg_1978> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/334943#Agent/springer_berlin_heidelberg> ; # Springer Berlin Heidelberg
   schema:url <http://link.springer.com/10.1007/978-3-642-61876-5> ;
   schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-540-08158-6> ;
   schema:url <http://dx.doi.org/10.1007/978-3-642-61876-5> ;
   schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3092195> ;
   schema:workExample <http://worldcat.org/isbn/9783642618765> ;
   schema:workExample <http://worldcat.org/isbn/9783540081586> ;
   schema:workExample <http://dx.doi.org/10.1007/978-3-642-61876-5> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/851800260> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/334943#Agent/springer_berlin_heidelberg> # Springer Berlin Heidelberg
    a bgn:Agent ;
   schema:name "Springer Berlin Heidelberg" ;
    .

<http://experiment.worldcat.org/entity/work/data/334943#Place/berlin_heidelberg> # Berlin, Heidelberg
    a schema:Place ;
   schema:name "Berlin, Heidelberg" ;
    .

<http://experiment.worldcat.org/entity/work/data/334943#Series/ergebnisse_der_mathematik_und_ihrer_grenzgebiete_a_series_of_modern_surveys_in_mathematics> # Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/851800260> ; # Manifolds all of whose Geodesics are Closed
   schema:name "Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics ;" ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
   schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/943477> # Global differential geometry
    a schema:Intangible ;
   schema:name "Global differential geometry"@en ;
    .

<http://link.springer.com/10.1007/978-3-642-61876-5>
   rdfs:comment "from Springer" ;
   rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://viaf.org/viaf/24679276> # Arthur L. Besse
    a schema:Person ;
   schema:familyName "Besse" ;
   schema:givenName "Arthur L." ;
   schema:name "Arthur L. Besse" ;
    .

<http://worldcat.org/entity/work/data/334943#CreativeWork/>
    a schema:CreativeWork ;
   schema:description "Print version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/851800260> ; # Manifolds all of whose Geodesics are Closed
    .

<http://worldcat.org/isbn/9783540081586>
    a schema:ProductModel ;
   schema:isbn "3540081585" ;
   schema:isbn "9783540081586" ;
    .

<http://worldcat.org/isbn/9783642618765>
    a schema:ProductModel ;
   schema:isbn "3642618766" ;
   schema:isbn "9783642618765" ;
    .

<http://worldcat.org/issn/0071-1136> # Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics,
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/851800260> ; # Manifolds all of whose Geodesics are Closed
   schema:issn "0071-1136" ;
   schema:name "Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.