skip to content
Manifolds and modular forms Preview this item
ClosePreview this item
Checking...

Manifolds and modular forms

Author: Friedrich Hirzebruch; Thomas Berger; Rainer Jung
Publisher: Braunschweig : Vieweg, 1994.
Series: Aspects of mathematics., E ;, vol. 20.
Edition/Format:   eBook : Document : English : Second editionView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Hirzebruch, Friedrich.
Manifolds and modular forms.
(OCoLC)30679542
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Friedrich Hirzebruch; Thomas Berger; Rainer Jung
ISBN: 9783663107262 3663107264
OCLC Number: 861705427
Notes: "A publication of the Max-Planck-Institut für Mathematik, Bonn."
Description: 1 online resource (xi, 211 pages) : illustrations.
Contents: 1 Background --
2 Elliptic genera --
3 A universal addition theorem for genera --
4 Multiplicativity in fibre bundles --
5 The Atiyah-Singer index theorem --
6 Twisted operators and genera --
7 Riemann-Roch and elliptic genera in the complex case --
8 A divisibility theorem for elliptic genera --
Appendix I Modular forms --
1 Fundamental concepts --
2 Examples of modular forms --
3 The Weierstraß ?-function as a Jacobi form --
4 Some special functions and modular forms --
5 Theta functions, divisors, and elliptic functions --
Appendix II The Dirac operator --
1 The solution --
2 The problem --
1 Zolotarev polynomials --
2 Interpretation as an algebraic curve --
3 The differential equation --
revisited --
4 Modular interpretation of Zolotarev polynomials --
5 The embedding of the modular curve --
6 Applications to elliptic genera --
Symbols.
Series Title: Aspects of mathematics., E ;, vol. 20.
Responsibility: Friedrich Hirzebruch, Thomas Berger, Rainer Jung ; translated by Peter S. Landweber.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/861705427> # Manifolds and modular forms
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "861705427" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/29624467#Topic/mannigfaltigkeit> ; # Mannigfaltigkeit
    schema:about <http://experiment.worldcat.org/entity/work/data/29624467#Topic/elliptisches_geschlecht> ; # Elliptisches Geschlecht
    schema:about <http://experiment.worldcat.org/entity/work/data/29624467#Topic/vormen_wiskunde> ; # Vormen (wiskunde)
    schema:about <http://experiment.worldcat.org/entity/work/data/29624467#Topic/variedades_geometria> ; # Variedades (geometria)
    schema:about <http://experiment.worldcat.org/entity/work/data/29624467#Topic/modulform> ; # Modulform
    schema:about <http://id.worldcat.org/fast/932983> ; # Forms, Modular
    schema:about <http://experiment.worldcat.org/entity/work/data/29624467#Topic/engineering_general> ; # Engineering, general
    schema:about <http://id.worldcat.org/fast/1007726> ; # Manifolds (Mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/29624467#Topic/manifolds> ; # Manifolds
    schema:about <http://dewey.info/class/516.362/e22/> ;
    schema:bookEdition "Second edition." ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/59163071> ; # Thomas Berger
    schema:contributor <http://viaf.org/viaf/71470412> ; # Rainer Jung
    schema:creator <http://viaf.org/viaf/68991493> ; # Friedrich Hirzebruch
    schema:datePublished "1994" ;
    schema:description "1 Background -- 2 Elliptic genera -- 3 A universal addition theorem for genera -- 4 Multiplicativity in fibre bundles -- 5 The Atiyah-Singer index theorem -- 6 Twisted operators and genera -- 7 Riemann-Roch and elliptic genera in the complex case -- 8 A divisibility theorem for elliptic genera -- Appendix I Modular forms -- 1 Fundamental concepts -- 2 Examples of modular forms -- 3 The Weierstraß ?-function as a Jacobi form -- 4 Some special functions and modular forms -- 5 Theta functions, divisors, and elliptic functions -- Appendix II The Dirac operator -- 1 The solution -- 2 The problem -- 1 Zolotarev polynomials -- 2 Interpretation as an algebraic curve -- 3 The differential equation -- revisited -- 4 Modular interpretation of Zolotarev polynomials -- 5 The embedding of the modular curve -- 6 Applications to elliptic genera -- Symbols."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/29624467> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/0179-2156> ; # Aspects of mathematics.
    schema:isSimilarTo <http://www.worldcat.org/oclc/30679542> ;
    schema:name "Manifolds and modular forms"@en ;
    schema:productID "861705427" ;
    schema:url <http://dx.doi.org/10.1007/978-3-663-10726-2> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-663-10726-2> ;
    schema:workExample <http://worldcat.org/isbn/9783663107262> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/861705427> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/29624467#Topic/elliptisches_geschlecht> # Elliptisches Geschlecht
    a schema:Intangible ;
    schema:name "Elliptisches Geschlecht"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/29624467#Topic/engineering_general> # Engineering, general
    a schema:Intangible ;
    schema:name "Engineering, general"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/29624467#Topic/mannigfaltigkeit> # Mannigfaltigkeit
    a schema:Intangible ;
    schema:name "Mannigfaltigkeit"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/29624467#Topic/variedades_geometria> # Variedades (geometria)
    a schema:Intangible ;
    schema:name "Variedades (geometria)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/29624467#Topic/vormen_wiskunde> # Vormen (wiskunde)
    a schema:Intangible ;
    schema:name "Vormen (wiskunde)"@en ;
    .

<http://id.worldcat.org/fast/1007726> # Manifolds (Mathematics)
    a schema:Intangible ;
    schema:name "Manifolds (Mathematics)"@en ;
    .

<http://id.worldcat.org/fast/932983> # Forms, Modular
    a schema:Intangible ;
    schema:name "Forms, Modular"@en ;
    .

<http://viaf.org/viaf/59163071> # Thomas Berger
    a schema:Person ;
    schema:familyName "Berger" ;
    schema:givenName "Thomas" ;
    schema:name "Thomas Berger" ;
    .

<http://viaf.org/viaf/68991493> # Friedrich Hirzebruch
    a schema:Person ;
    schema:familyName "Hirzebruch" ;
    schema:givenName "Friedrich" ;
    schema:name "Friedrich Hirzebruch" ;
    .

<http://viaf.org/viaf/71470412> # Rainer Jung
    a schema:Person ;
    schema:familyName "Jung" ;
    schema:givenName "Rainer" ;
    schema:name "Rainer Jung" ;
    .

<http://worldcat.org/isbn/9783663107262>
    a schema:ProductModel ;
    schema:description "electronic bk." ;
    schema:isbn "3663107264" ;
    schema:isbn "9783663107262" ;
    .

<http://worldcat.org/issn/0179-2156> # Aspects of mathematics.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/861705427> ; # Manifolds and modular forms
    schema:issn "0179-2156" ;
    schema:name "Aspects of mathematics." ;
    schema:name "Aspects of mathematics. E," ;
    .

<http://www.worldcat.org/oclc/30679542>
    a schema:CreativeWork ;
    rdfs:label "Manifolds and modular forms." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/861705427> ; # Manifolds and modular forms
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.