skip to content
Mathematical models : mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics Preview this item
ClosePreview this item
Checking...

Mathematical models : mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics

Author: Richard Haberman
Publisher: Philadelphia : Society for Industrial and Applied Mathematics, ©1998.
Series: Classics in applied mathematics, 21.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
Mathematics is a grand subject in the way it can be applied to various problems in science and engineering. To use mathematics, one needs to understand the physical context. The author uses mathematical techniques along with observations and experiments to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow. Equal emphasis is placed on the mathematical formulation of the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Richard Haberman
ISBN: 0898714087 9780898714081
OCLC Number: 38853003
Notes: "This SIAM edition is an unabridged republication of the work first published by Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1977"--Title page verso.
Description: xvii, 402 pages : illustrations ; 23 cm.
Contents: Foreword; Preface to the classics edition; Preface; Part I. Mechanical Vibrations: Introduction to Mathematical Models in the Physical Sciences; Newton's Law; Newton's Law as Applied to a Spring-Mass System; Gravity; Oscillation of a Spring-Mass System; Dimensions and Units; Qualitative and Quantitative Behavior of a Spring-Mass System; Initial Value Problem; A Two-Mass Oscillator; Friction; Oscillations of a Damped System; Underdamped Oscillations; Overdamped and Critically Damped Oscillations; A Pendulum; How Small is Small?; A Dimensionless Time Variable; Nonlinear Frictionless Systems; Linearized Stability Analysis of an Equilibrium Solution; Conservation of Energy; Energy Curves; Phase Plane of a Linear Oscillator; Phase Plane of a Nonlinear Pendulum; Can a Pendulum Stop?; What Happens if a Pendulum is Pushed Too Hard?; Period of a Nonlinear Pendulum; Nonlinear Oscillations with Damping; Equilibrium Positions and Linearized Stability; Nonlinear Pendulum with Damping; Further Readings in Mechanical Vibrations; Part II. Population Dynamics-Mathematical Ecology. Introduction to Mathematical Models in Biology; Population Models; A Discrete One-Species Model; Constant Coefficient First-Order Difference Equations; Exponential Growth; Discrete Once-Species Models with an Age Distribution; Stochastic Birth Processes; Density-Dependent Growth; Phase Plane Solution of the Logistic Equation; Explicit Solution of the Logistic Equation; Growth Models with Time Delays; Linear Constant Coefficient Difference Equations; Destabilizing Influence of Delays; Introduction to Two-Species Models; Phase Plane, Equilibrium, and linearization; System of Two Constant Coefficient First-Order Differential Equations, Stability of Two-Species Equilibrium Populations; Phase Plane of Linear Systems; Predator-Prey Models; Derivation of the Lotka-Volterra Equations; Qualitative Solution of the Lotka- Volterra Equations; Average Populations of Predators and Preys; Man's Influence on Predator-Prey Ecosystems; Limitations of the Lotka-Volterra Equation; Two Competing Species; Further Reading in Mathematical Ecology; Part III. Traffic Flow. Introduction to Traffic Flow; Automobile Velocities and a Velocity Field; Traffic Flow and Traffic Density; Flow Equals Density Times Velocity; Conservation of the Number of Cars; A Velocity-Density Relationship; Experimental Observations; Traffic Flow; Steady-State Car-Following Models; Partial Differential Equations; Linearization; A Linear Partial Differential Equation; Traffic Density Waves; An Interpretation of Traffic Waves; A Nearly Uniform Traffic Flow Example; Nonuniform Traffic --
The Method of Characteristics; After a Traffic Light Turns Green; A Linear Velocity-Density Relationship; An Example; Wave Propagation of Automobile Brake Lights; Congestion Ahead; Discontinuous Traffic; Uniform Traffic Stopped by a Red Light; A Stationary Shock Wave; The Earliest Shock; Validity of Linearization; Effect of a Red Light or an Accident; Exits and Entrances; Constantly Entering Cars; A Highway Entrance; Further reading in traffic flow; Index.
Series Title: Classics in applied mathematics, 21.
Responsibility: Richard Haberman.
More information:

Abstract:

Mathematics is a grand subject in the way it can be applied to various problems in science and engineering. To use mathematics, one needs to understand the physical context. The author uses mathematical techniques along with observations and experiments to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow. Equal emphasis is placed on the mathematical formulation of the problem and the interpretation of the results. In the sections on mechanical vibrations and population dynamics, the author emphasizes the nonlinear aspects of ordinary differential equations and develops the concepts of equilibrium solutions and their stability. He introduces phase plane methods for the nonlinear pendulum and for predator-prey and competing species models.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/38853003> # Mathematical models : mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "38853003" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/808608712#Place/philadelphia> ; # Philadelphia
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/pau> ;
    schema:about <http://dewey.info/class/511.8/e21/> ;
    schema:about <http://id.worldcat.org/fast/1166172> ; # Vibration--Mathematical models
    schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
    schema:about <http://id.worldcat.org/fast/901509> ; # Ecology--Mathematical models
    schema:about <http://experiment.worldcat.org/entity/work/data/808608712#Topic/modeles_mathematiques> ; # Modèles mathématiques
    schema:about <http://id.worldcat.org/fast/1154154> ; # Traffic flow--Mathematical models
    schema:about <http://id.loc.gov/authorities/subjects/sh2008102528> ; # Ecology--Mathematical models
    schema:about <http://experiment.worldcat.org/entity/work/data/808608712#Topic/biologie_des_populations_modeles_mathematiques> ; # Biologie des populations--Modèles mathématiques
    schema:about <http://id.loc.gov/authorities/subjects/sh2010117786> ; # Vibration--Mathematical models
    schema:about <http://experiment.worldcat.org/entity/work/data/808608712#Topic/vibration_modeles_mathematiques> ; # Vibration--Modèles mathématiques
    schema:about <http://experiment.worldcat.org/entity/work/data/808608712#Topic/ecologie_modeles_mathematiques> ; # Écologie--Modèles mathématiques
    schema:about <http://experiment.worldcat.org/entity/work/data/808608712#Topic/vibrations_modeles_mathematiques> ; # Vibrations--Modèles mathématiques
    schema:about <http://id.worldcat.org/fast/1012085> ; # Mathematical models
    schema:about <http://experiment.worldcat.org/entity/work/data/808608712#Topic/circulation_modeles_mathematiques> ; # Circulation--Modèles mathématiques
    schema:about <http://experiment.worldcat.org/entity/work/data/808608712#Topic/mathematiques> ; # Mathématiques
    schema:about <http://id.loc.gov/authorities/subjects/sh2010116834> ; # Traffic flow--Mathematical models
    schema:bookFormat bgn:PrintBook ;
    schema:copyrightYear "1998" ;
    schema:creator <http://viaf.org/viaf/109292332> ; # Richard Haberman
    schema:datePublished "1998" ;
    schema:description "Foreword; Preface to the classics edition; Preface; Part I. Mechanical Vibrations: Introduction to Mathematical Models in the Physical Sciences; Newton's Law; Newton's Law as Applied to a Spring-Mass System; Gravity; Oscillation of a Spring-Mass System; Dimensions and Units; Qualitative and Quantitative Behavior of a Spring-Mass System; Initial Value Problem; A Two-Mass Oscillator; Friction; Oscillations of a Damped System; Underdamped Oscillations; Overdamped and Critically Damped Oscillations; A Pendulum; How Small is Small?; A Dimensionless Time Variable; Nonlinear Frictionless Systems; Linearized Stability Analysis of an Equilibrium Solution; Conservation of Energy; Energy Curves; Phase Plane of a Linear Oscillator; Phase Plane of a Nonlinear Pendulum; Can a Pendulum Stop?; What Happens if a Pendulum is Pushed Too Hard?; Period of a Nonlinear Pendulum; Nonlinear Oscillations with Damping; Equilibrium Positions and Linearized Stability; Nonlinear Pendulum with Damping; Further Readings in Mechanical Vibrations; Part II. Population Dynamics-Mathematical Ecology. Introduction to Mathematical Models in Biology; Population Models; A Discrete One-Species Model; Constant Coefficient First-Order Difference Equations; Exponential Growth; Discrete Once-Species Models with an Age Distribution; Stochastic Birth Processes; Density-Dependent Growth; Phase Plane Solution of the Logistic Equation; Explicit Solution of the Logistic Equation; Growth Models with Time Delays; Linear Constant Coefficient Difference Equations; Destabilizing Influence of Delays; Introduction to Two-Species Models; Phase Plane, Equilibrium, and linearization; System of Two Constant Coefficient First-Order Differential Equations, Stability of Two-Species Equilibrium Populations; Phase Plane of Linear Systems; Predator-Prey Models; Derivation of the Lotka-Volterra Equations; Qualitative Solution of the Lotka- Volterra Equations; Average Populations of Predators and Preys; Man's Influence on Predator-Prey Ecosystems; Limitations of the Lotka-Volterra Equation; Two Competing Species; Further Reading in Mathematical Ecology; Part III. Traffic Flow. Introduction to Traffic Flow; Automobile Velocities and a Velocity Field; Traffic Flow and Traffic Density; Flow Equals Density Times Velocity; Conservation of the Number of Cars; A Velocity-Density Relationship; Experimental Observations; Traffic Flow; Steady-State Car-Following Models; Partial Differential Equations; Linearization; A Linear Partial Differential Equation; Traffic Density Waves; An Interpretation of Traffic Waves; A Nearly Uniform Traffic Flow Example; Nonuniform Traffic -- The Method of Characteristics; After a Traffic Light Turns Green; A Linear Velocity-Density Relationship; An Example; Wave Propagation of Automobile Brake Lights; Congestion Ahead; Discontinuous Traffic; Uniform Traffic Stopped by a Red Light; A Stationary Shock Wave; The Earliest Shock; Validity of Linearization; Effect of a Red Light or an Accident; Exits and Entrances; Constantly Entering Cars; A Highway Entrance; Further reading in traffic flow; Index."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/808608712> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/808608712#Series/classics_in_applied_mathematics> ; # Classics in applied mathematics ;
    schema:name "Mathematical models : mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics"@en ;
    schema:productID "38853003" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/38853003#PublicationEvent/philadelphia_society_for_industrial_and_applied_mathematics_1998> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/808608712#Agent/society_for_industrial_and_applied_mathematics> ; # Society for Industrial and Applied Mathematics
    schema:reviews <http://www.worldcat.org/title/-/oclc/38853003#Review/1446417387> ;
    schema:url <http://www.gbv.de/dms/goettingen/24511775X.pdf> ;
    schema:url <http://catdir.loc.gov/catdir/enhancements/fy0726/97062401-t.html> ;
    schema:url <http://www.gbv.de/dms/bowker/toc/9780898714081.pdf> ;
    schema:workExample <http://worldcat.org/isbn/9780898714081> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/38853003> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/808608712#Agent/society_for_industrial_and_applied_mathematics> # Society for Industrial and Applied Mathematics
    a bgn:Agent ;
    schema:name "Society for Industrial and Applied Mathematics" ;
    .

<http://experiment.worldcat.org/entity/work/data/808608712#Series/classics_in_applied_mathematics> # Classics in applied mathematics ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/38853003> ; # Mathematical models : mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics
    schema:name "Classics in applied mathematics ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/808608712#Topic/biologie_des_populations_modeles_mathematiques> # Biologie des populations--Modèles mathématiques
    a schema:Intangible ;
    schema:name "Biologie des populations--Modèles mathématiques"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/808608712#Topic/circulation_modeles_mathematiques> # Circulation--Modèles mathématiques
    a schema:Intangible ;
    schema:name "Circulation--Modèles mathématiques"@en ;
    schema:name "Circulation--Modèles mathématiques"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/808608712#Topic/ecologie_modeles_mathematiques> # Écologie--Modèles mathématiques
    a schema:Intangible ;
    schema:name "Écologie--Modèles mathématiques"@en ;
    schema:name "Écologie--Modèles mathématiques"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/808608712#Topic/modeles_mathematiques> # Modèles mathématiques
    a schema:Intangible ;
    schema:name "Modèles mathématiques"@en ;
    schema:name "Modèles mathématiques"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/808608712#Topic/vibration_modeles_mathematiques> # Vibration--Modèles mathématiques
    a schema:Intangible ;
    schema:name "Vibration--Modèles mathématiques"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/808608712#Topic/vibrations_modeles_mathematiques> # Vibrations--Modèles mathématiques
    a schema:Intangible ;
    schema:name "Vibrations--Modèles mathématiques"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh2008102528> # Ecology--Mathematical models
    a schema:Intangible ;
    schema:name "Ecology--Mathematical models"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh2010116834> # Traffic flow--Mathematical models
    a schema:Intangible ;
    schema:name "Traffic flow--Mathematical models"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh2010117786> # Vibration--Mathematical models
    a schema:Intangible ;
    schema:name "Vibration--Mathematical models"@en ;
    .

<http://id.worldcat.org/fast/1012085> # Mathematical models
    a schema:Intangible ;
    schema:name "Mathematical models"@en ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
    schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/1154154> # Traffic flow--Mathematical models
    a schema:Intangible ;
    schema:name "Traffic flow--Mathematical models"@en ;
    .

<http://id.worldcat.org/fast/1166172> # Vibration--Mathematical models
    a schema:Intangible ;
    schema:name "Vibration--Mathematical models"@en ;
    .

<http://id.worldcat.org/fast/901509> # Ecology--Mathematical models
    a schema:Intangible ;
    schema:name "Ecology--Mathematical models"@en ;
    .

<http://viaf.org/viaf/109292332> # Richard Haberman
    a schema:Person ;
    schema:birthDate "1945" ;
    schema:familyName "Haberman" ;
    schema:givenName "Richard" ;
    schema:name "Richard Haberman" ;
    .

<http://worldcat.org/isbn/9780898714081>
    a schema:ProductModel ;
    schema:isbn "0898714087" ;
    schema:isbn "9780898714081" ;
    .

<http://www.worldcat.org/title/-/oclc/38853003>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/38853003> ; # Mathematical models : mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics
    schema:dateModified "2018-05-16" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .

<http://www.worldcat.org/title/-/oclc/38853003#Review/1446417387>
    a schema:Review ;
    schema:itemReviewed <http://www.worldcat.org/oclc/38853003> ; # Mathematical models : mechanical vibrations, population dynamics, and traffic flow : an introduction to applied mathematics
    schema:reviewBody "Mathematics is a grand subject in the way it can be applied to various problems in science and engineering. To use mathematics, one needs to understand the physical context. The author uses mathematical techniques along with observations and experiments to give an in-depth look at models for mechanical vibrations, population dynamics, and traffic flow. Equal emphasis is placed on the mathematical formulation of the problem and the interpretation of the results. In the sections on mechanical vibrations and population dynamics, the author emphasizes the nonlinear aspects of ordinary differential equations and develops the concepts of equilibrium solutions and their stability. He introduces phase plane methods for the nonlinear pendulum and for predator-prey and competing species models." ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.