omitir hasta el contenido
Measure theory and probability Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Measure theory and probability

Autor: Malcolm Ritchie Adams; Victor Guillemin
Editorial: Boston : Birkhäuse, ©1996.
Edición/Formato:   Print book : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
"Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de documento: Libro/Texto
Todos autores / colaboradores: Malcolm Ritchie Adams; Victor Guillemin
ISBN: 0817638849 9780817638849 3764338849 9783764338848
Número OCLC: 33668134
Descripción: xiv, 205 pages : illustrations ; 24 cm
Contenido: Measure theory --
Integration --
Fourier analysis.
Responsabilidad: Malcolm Adams, Victor Guillemin.

Resumen:

Suitable for instructors and students of statistical measure theoretic courses, this title features numerous informative exercises, and helpful hints or solution outlines with many of the problems.  Leer más

Reseñas

Reseñas editoriales

Resumen de la editorial

"...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will appreciate the numerous informative Leer más

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Temas relacionados:(4)

Listas de usuarios con este material (1)

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/33668134>
library:oclcnum"33668134"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"1996"
schema:creator
schema:datePublished"1996"
schema:description"Measure theory -- Integration -- Fourier analysis."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/5394979>
schema:inLanguage"en"
schema:name"Measure theory and probability"@en
schema:publication
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/33668134>
schema:reviewBody""Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting applications and a range of topics that include the construction of the Lebesgue measure on R [superscript n] (metric space approach), the Borel-Cantelli lemmas, straight measure theory (the Lebesgue integral). Chapter 3 expands on abstract Fourier analysis, Fourier series and the Fourier integral, which have some beautiful probabilistic applications: Polya's theorem on random walks, Kac's proof of the Szego theorem and the central limit theorem. In this concise text, quite a few applications to probability are packed into the exercises."--Jacket."
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.