컨텐츠로 이동
Measure theory and probability 해당 항목을 미리보기
닫기해당 항목을 미리보기
확인중입니다…

Measure theory and probability

저자: Malcolm Ritchie Adams; Victor Guillemin
출판사: Boston : Birkhäuse, ©1996.
판/형식:   book_printbook : 영어모든 판과 형식 보기
데이터베이스:WorldCat
요약:
"Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting  더 읽기…
평가:

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

주제
다음과 같습니다:

 

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중

상세정보

문서 형식:
모든 저자 / 참여자: Malcolm Ritchie Adams; Victor Guillemin
ISBN: 0817638849 9780817638849 3764338849 9783764338848
OCLC 번호: 33668134
설명: xiv, 205 pages : illustrations ; 24 cm
내용: Measure theory --
Integration --
Fourier analysis.
책임: Malcolm Adams, Victor Guillemin.

초록:

Suitable for instructors and students of statistical measure theoretic courses, this title features numerous informative exercises, and helpful hints or solution outlines with many of the problems.  더 읽기…

리뷰

편집자의 리뷰

출판사 줄거리

"...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will appreciate the numerous informative 더 읽기…

 
사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…

태그

첫번째 되기

유사 항목

관련 주제:(4)

이 항목을 가지고 있는 사용자 목록 (1)

요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

링크된 데이터


<http://www.worldcat.org/oclc/33668134>
library:oclcnum"33668134"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"1996"
schema:creator
schema:datePublished"1996"
schema:description"Measure theory -- Integration -- Fourier analysis."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/5394979>
schema:inLanguage"en"
schema:name"Measure theory and probability"@en
schema:publication
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/33668134>
schema:reviewBody""Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting applications and a range of topics that include the construction of the Lebesgue measure on R [superscript n] (metric space approach), the Borel-Cantelli lemmas, straight measure theory (the Lebesgue integral). Chapter 3 expands on abstract Fourier analysis, Fourier series and the Fourier integral, which have some beautiful probabilistic applications: Polya's theorem on random walks, Kac's proof of the Szego theorem and the central limit theorem. In this concise text, quite a few applications to probability are packed into the exercises."--Jacket."
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.