doorgaan naar inhoud
Measure theory and probability Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Measure theory and probability

Auteur: Malcolm Ritchie Adams; Victor Guillemin
Uitgever: Boston : Birkhäuse, ©1996.
Editie/Formaat:   Boek : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
"Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Soort document: Boek
Alle auteurs / medewerkers: Malcolm Ritchie Adams; Victor Guillemin
ISBN: 0817638849 9780817638849 3764338849 9783764338848
OCLC-nummer: 33668134
Beschrijving: xiv, 205 p. : ill. ; 24 cm.
Inhoud: Measure theory --
Integration --
Fourier analysis.
Verantwoordelijkheid: Malcolm Adams, Victor Guillemin.
Meer informatie:

Fragment:

Suitable for instructors and students of statistical measure theoretic courses, this title features numerous informative exercises, and helpful hints or solution outlines with many of the problems.  Meer lezen...

Beoordelingen

Professionele beoordelingen

Synopsis uitgever

"...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will appreciate the numerous informative Meer lezen...

 
Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/33668134>
library:oclcnum"33668134"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/33668134>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:copyrightYear"1996"
schema:creator
schema:datePublished"1996"
schema:description"Measure theory -- Integration -- Fourier analysis."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/5394979>
schema:inLanguage"en"
schema:name"Measure theory and probability"@en
schema:numberOfPages"205"
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/33668134>
schema:reviewBody""Measure theory and integration are presented to undergraduates from the perspective of probability theory. The first chapter shows why measure theory is needed for the formulation of problems in probability, and explains why one would have been forced to invent Lebesgue theory (had it not already existed) to contend with the paradoxes of large numbers. The measure-theoretic approach then leads to interesting applications and a range of topics that include the construction of the Lebesgue measure on R [superscript n] (metric space approach), the Borel-Cantelli lemmas, straight measure theory (the Lebesgue integral). Chapter 3 expands on abstract Fourier analysis, Fourier series and the Fourier integral, which have some beautiful probabilistic applications: Polya's theorem on random walks, Kac's proof of the Szego theorem and the central limit theorem. In this concise text, quite a few applications to probability are packed into the exercises."--BOOK JACKET."
schema:url
schema:workExample
schema:workExample

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.