skip to content
Methods and applications of topological data analysis Preview this item
ClosePreview this item
Checking...

Methods and applications of topological data analysis

Author: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
Publisher: 2010.
Dissertation: Thesis (Ph. D.)--Stanford University, 2010.
Edition/Format:   Thesis/dissertation : Document : Thesis/dissertation : eBook   Computer File : English
Database:WorldCat
Summary:
The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
OCLC Number: 652792734
Notes: Submitted to the Department of Mathematics.
Description: 1 online resource.
Responsibility: Jennifer Novak Kloke.

Abstract:

The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/652792734>
library:oclcnum"652792734"
owl:sameAs<info:oclcnum/652792734>
rdf:typeschema:Book
rdf:typej.1:Web_document
rdf:typej.1:Thesis
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2010"
schema:description"The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/553334413>
schema:inLanguage"en"
schema:name"Methods and applications of topological data analysis"@en
schema:url<http://purl.stanford.edu/yg805jw1021>
schema:url

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.