přejít na obsah
Methods and applications of topological data analysis Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Methods and applications of topological data analysis

Autor Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
Vydavatel: 2010.
Dizertace: Thesis (Ph. D.)--Stanford University, 2010.
Vydání/formát:   Kvalifikační práce : Document : Thesis/dissertation : e-kniha   Computer File : English
Databáze:WorldCat
Shrnutí:
The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Typ materiálu: Document, Thesis/dissertation, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
OCLC číslo: 652792734
Poznámky: Submitted to the Department of Mathematics.
Popis: 1 online resource.
Odpovědnost: Jennifer Novak Kloke.

Anotace:

The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants.

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.
Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/652792734>
library:oclcnum"652792734"
owl:sameAs<info:oclcnum/652792734>
rdf:typeschema:Book
rdf:typej.1:Web_document
rdf:typej.1:Thesis
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2010"
schema:description"The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/553334413>
schema:inLanguage"en"
schema:name"Methods and applications of topological data analysis"@en
schema:url<http://purl.stanford.edu/yg805jw1021>
schema:url

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.