zum Inhalt wechseln
Methods and applications of topological data analysis Titelvorschau
SchließenTitelvorschau
Prüfung…

Methods and applications of topological data analysis

Verfasser/in: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
Verlag: 2010.
Dissertation: Thesis (Ph. D.)--Stanford University, 2010.
Ausgabe/Format   Diplomarbeit/Dissertation : Dokument : Diplomarbeit/Dissertation : E-Book   Computer-Datei : Englisch
Datenbank:WorldCat
Zusammenfassung:
The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Medientyp: Dokument, Diplomarbeit/Dissertation, Internetquelle
Dokumenttyp: Internet-Ressource, Computer-Datei
Alle Autoren: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
OCLC-Nummer: 652792734
Anmerkungen: Submitted to the Department of Mathematics.
Beschreibung: 1 online resource.
Verfasserangabe: Jennifer Novak Kloke.

Abstract:

The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants.

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/652792734>
bgn:inSupportOf"Thesis (Ph. D.)--Stanford University, 2010."
library:oclcnum"652792734"
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:typebgn:Thesis
rdf:typej.0:Web_document
rdf:valueUnknown value: deg
rdf:valueUnknown value: dct
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2010"
schema:description"The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/553334413>
schema:inLanguage"en"
schema:name"Methods and applications of topological data analysis"@en
schema:publication
schema:url<http://purl.stanford.edu/yg805jw1021>
wdrs:describedby

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.