コンテンツへ移動
Methods and applications of topological data analysis 資料のプレビュー
閉じる資料のプレビュー
確認中…

Methods and applications of topological data analysis

著者: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
出版: 2010.
論文: Thesis (Ph. D.)--Stanford University, 2010.
エディション/フォーマット:   学位論文/卒業論文 : Document : Thesis/dissertation : 電子書籍   コンピューターファイル : English
データベース:WorldCat
概要:
The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - まずはあなたから!

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

資料の種類: Document, Thesis/dissertation, インターネット資料
ドキュメントの種類: インターネットリソース, コンピューターファイル
すべての著者/寄与者: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
OCLC No.: 652792734
注記: Submitted to the Department of Mathematics.
形態 1 online resource.
責任者: Jennifer Novak Kloke.

概要:

The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants.

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/652792734>
library:oclcnum"652792734"
library:placeOfPublication
owl:sameAs<info:oclcnum/652792734>
rdf:typej.0:Thesis
rdf:typej.2:Web_document
rdf:typej.2:Thesis
rdfs:seeAlso
schema:author
rdf:typeschema:Person
schema:name"Kloke, Jennifer Novak."
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:datePublished"2010"
schema:description"The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants."
schema:exampleOfWork<http://worldcat.org/entity/work/id/553334413>
schema:inLanguage"en"
schema:name"Methods and applications of topological data analysis"
schema:url<http://purl.stanford.edu/yg805jw1021>

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.