pular para conteúdo
Methods and applications of topological data analysis Ver prévia deste item
FecharVer prévia deste item
Checando...

Methods and applications of topological data analysis

Autor: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
Editora: 2010.
Dissertação: Thesis (Ph. D.)--Stanford University, 2010.
Edição/Formato   Tese/dissertação : Documento : Tese/dissertação : e-book   Arquivo de Computador : Inglês
Base de Dados:WorldCat
Resumo:
The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

 

Encontrar uma cópia on-line

Links para este item

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Tipo de Material: Documento, Tese/dissertação, Recurso Internet
Tipo de Documento: Recurso Internet, Arquivo de Computador
Todos os Autores / Contribuintes: Jennifer Novak Kloke; G Carlsson; Steve Kerckhoff; Rafe Mazzeo; Stanford University. Department of Mathematics.
Número OCLC: 652792734
Notas: Submitted to the Department of Mathematics.
Descrição: 1 online resource.
Responsabilidade: Jennifer Novak Kloke.

Resumo:

The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants.

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.
Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/652792734>
bgn:inSupportOf"Thesis (Ph. D.)--Stanford University, 2010."
library:oclcnum"652792734"
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:typebgn:Thesis
rdf:typej.0:Web_document
rdf:valueUnknown value: deg
rdf:valueUnknown value: dct
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2010"
schema:description"The focus of this dissertation is the development of methods for topological analysis as well as the application of topological tools to real world problems. The first half of the dissertation focuses on an algorithm for de-noising high-dimensional data for topological data analysis. This method significantly extends the applicability of many topological data analysis methods. In particular, this method extends the use of persistent homology, a generalized notion of homology for discrete data points, to data sets that were previously inaccessible because of noise. The second half of this dissertation focuses on a method for using topology to simplify complex chemical structures and to define a metric to quantify similarity for use in screening large databases of chemical compounds. This method has shown very promising initial results in locating new materials for efficiently separating carbon dioxide from the exhaust of coal-burning power plants."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/553334413>
schema:inLanguage"en"
schema:name"Methods and applications of topological data analysis"@en
schema:publication
schema:url<http://purl.stanford.edu/yg805jw1021>
wdrs:describedby

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.