skip to content
Metric structures for Riemannian and non-Riemannian spaces Preview this item
ClosePreview this item
Checking...

Metric structures for Riemannian and non-Riemannian spaces

Author: Mikhael Gromov
Publisher: Boston : Birkhäuser, ©2007.
Series: Modern Birkhäuser classics.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:

This book is an English translation of the famous "Green Book" by Lafontaine and Pansu (1979). It has been enriched and expanded with new material to reflect recent progress.

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Gromov, Mikhael, 1943-
Metric structures for Riemannian and non-Riemannian spaces.
Boston : Birkhäuser, ©2007
(DLC) 2006937425
(OCoLC)86109653
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Mikhael Gromov
ISBN: 9780817645830 0817645837 9780817645823 0817645829
OCLC Number: 184984815
Notes: "Reprint of the 2001 edition."
Description: 1 online resource (xix, 585 pages) : illustrations.
Contents: Length structures: path metric spaces --
Degree and dilatation --
Metric structures on families of metric spaces --
Convergence and concentration of metrics and measures --
Loewner rediscovered --
Manifolds with bounded Ricci curvature --
Isoperimetric inequalities and amenability --
Morse theory and minimal models --
Pinching and collapse / Misha Gromov.
Series Title: Modern Birkhäuser classics.
Other Titles: Structures métriques pour les variétés Riemanniennes.
Responsibility: Misha Gromov ; with appendices by M. Katz, P. Pansu, and S. Semmes ; English translation by Sean Michael Bates.
More information:

Reviews

Editorial reviews

Publisher Synopsis

From the reviews: "The book gives genius insight into the connections between topology and Riemannian geometry, geometry and probability, geometry and analysis, respectively. The huge variety of Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/184984815>
library:oclcnum"184984815"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/184984815>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:copyrightYear"2007"
schema:creator
schema:datePublished"2007"
schema:description"Length structures: path metric spaces -- Degree and dilatation -- Metric structures on families of metric spaces -- Convergence and concentration of metrics and measures -- Loewner rediscovered -- Manifolds with bounded Ricci curvature -- Isoperimetric inequalities and amenability -- Morse theory and minimal models -- Pinching and collapse / Misha Gromov."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/203277058>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Metric structures for Riemannian and non-Riemannian spaces"@en
schema:publisher
schema:url<http://site.ebrary.com/id/10187626>
schema:url<http://public.eblib.com/choice/publicfullrecord.aspx?p=372265>
schema:url<http://www.myilibrary.com?id=137714>
schema:url<http://rave.ohiolink.edu/ebooks/ebc/9780817645830>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=206050>
schema:url<http://www.springerlink.com/openurl.asp?genre=book&isbn=978-0-8176-4582-3>
schema:url
schema:url<http://dx.doi.org/10.1007/978-0-8176-4583-0>
schema:workExample
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.