skip to content
Model predictive control Preview this item
ClosePreview this item
Checking...

Model predictive control

Author: E F Camacho; C Bordons
Publisher: London ; New York : Springer, ©2004.
Series: Advanced textbooks in control and signal processing.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

The second edition of this book provides a thorough introduction to theoretical and practical aspects of the most commonly used MPC strategies. All of the material is thoroughly updated and there are  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: E F Camacho; C Bordons
ISBN: 1852336943 9781852336943
OCLC Number: 54005742
Description: xxii, 405 pages : illustrations ; 24 cm.
Contents: 1 Introduction to Model Predictive Control.- 1.1 MPC Strategy.- 1.2 Historical Perspective.- 1.3 Industrial Technology.- 1.4 Outline of the Chapters.- 2 Model Predictive Controllers.- 2.1 MPC Elements.- 2.1.1 Prediction Model.- 2.1.2 Objective Function.- 2.1.3 Obtaining the Control Law.- 2.2 Review of Some MPC Algorithms.- 2.3 State Space Formulation.- 3 Commercial Model Predictive Control Schemes.- 3.1 Dynamic Matrix Control.- 3.1.1 Prediction.- 3.1.2 Measurable Disturbances.- 3.1.3 Control Algorithm.- 3.2 Model Algorithmic Control.- 3.2.1 Process Model and Prediction.- 3.2.2 Control Law.- 3.3 Predictive Functional Control.- 3.3.1 Formulation.- 3.4 Case Study: A Water Heater.- 3.5 Exercises.- 4 Generalized Predictive Control.- 4.1 Introduction.- 4.2 Formulation of Generalized Predictive Control.- 4.3 The Coloured Noise Case.- 4.4 An Example.- 4.5 Closed-Loop Relationships.- 4.6 The Role of the T Polynomial.- 4.6.1 Selection of the T Polynomial.- 4.6.2 Relationships with Other Formulations.- 4.7 The P Polynomial.- 4.8 Consideration of Measurable Disturbances.- 4.9 Use of a Different Predictor in GPC.- 4.9.1 Equivalent Structure.- 4.9.2 A Comparative Example.- 4.10 Constrained Receding Horizon Predictive Control.- 4.10.1 Computation of the Control Law.- 4.10.2 Properties.- 4.11 Stable GPC.- 4.11.1 Formulation of the Control Law.- 4.12 Exercises.- 5 Simple Implementation of GPC for Industrial Processes.- 5.1 Plant Model.- 5.1.1 Plant Identification: The Reaction Curve Method.- 5.2 The Dead Time Multiple of the Sampling Time Case.- 5.2.1 Discrete Plant Model.- 5.2.2 Problem Formulation.- 5.2.3 Computation of the Controller Parameters.- 5.2.4 Role of the Control-weighting Factor.- 5.2.5 Implementation Algorithm.- 5.2.6 An Implementation Example.- 5.3 The Dead Time Nonmultiple of the Sampling Time Case.- 5.3.1 Discrete Model of the Plant.- 5.3.2 Controller Parameters.- 5.3.3 Example.- 5.4 Integrating Processes.- 5.4.1 Derivation of the Control Law.- 5.4.2 Controller Parameters.- 5.4.3 Example.- 5.5 Consideration of Ramp Setpoints.- 5.5.1 Example.- 5.6 Comparison with Standard GPC.- 5.7 Stability Robustness Analysis.- 5.7.1 Structured Uncertainties.- 5.7.2 Unstructured Uncertainties.- 5.7.3 General Comments.- 5.8 Composition Control in an Evaporator.- 5.8.1 Description of the Process.- 5.8.2 Obtaining the Linear Model.- 5.8.3 Controller Design.- 5.8.4 Results.- 5.9 Exercises.- 6 Multivariable Model Predictive Control.- 6.1 Derivation of Multivariable GPC.- 6.1.1 White Noise Case.- 6.1.2 Coloured Noise Case.- 6.1.3 Measurable Disturbances.- 6.2 Obtaining a Matrix Fraction Description.- 6.2.1 Transfer Matrix Representation.- 6.2.2 Parametric Identification.- 6.3 State Space Formulation.- 6.3.1 Matrix Fraction and State Space Equivalences.- 6.4 Case Study: Flight Control.- 6.5 Convolution Models Formulation.- 6.6 Case Study: Chemical Reactor.- 6.6.1 Plant Description.- 6.6.2 Obtaining the Plant Model.- 6.6.3 Control Law.- 6.6.4 Simulation Results.- 6.7 Dead Time Problems.- 6.8 Case Study: Distillation Column.- 6.9 Multivariable MPC and Transmission Zeros.- 6.9.1 Simulation Example.- 6.9.2 Tuning MPC for Processes with OUD Zeros.- 6.10 Exercises.- 7 Constrained Model Predictive Control.- 7.1 Constraints and MPC.- 7.1.1 Constraint General Form.- 7.1.2 Illustrative Examples.- 7.2 Constraints and Optimization.- 7.3 Revision of Main Quadratic Programming Algorithms.- 7.3.1 The Active Set Methods.- 7.3.2 Feasible Direction Methods.- 7.3.3 Initial Feasible Point.- 7.3.4 Pivoting Methods.- 7.4 Constraints Handling.- 7.4.1 Slew Rate Constraints.- 7.4.2 Amplitude Constraints.- 7.4.3 Output Constraints.- 7.4.4 Constraint Reduction.- 7.5 1-norm.- 7.6 Case Study: A Compressor.- 7.7 Constraint Management.- 7.7.1 Feasibility.- 7.7.2 Techniques for Improving Feasibility.- 7.8 Constrained MPC and Stability.- 7.9 Multiobjective MPC.- 7.9.1 Priorization of Objectives.- 7.10 Exercises.- 8 Robust Model Predictive Control.- 8.1 Process Models and Uncertainties.- 8.1.1 Truncated Impulse Response Uncertainties.- 8.1.2 Matrix Fraction Description Uncertainties.- 8.1.3 Global Uncertainties.- 8.2 Objective Functions.- 8.2.1 Quadratic Cost Function.- 8.2.2 ?-? norm.- 8.2.3 1-norm.- 8.3 Robustness by Imposing Constraints.- 8.4 Constraint Handling.- 8.5 Illustrative Examples.- 8.5.1 Bounds on the Output.- 8.5.2 Uncertainties in the Gain.- 8.6 Robust MPC and Linear Matrix Inequalities.- 8.7 Closed-Loop Predictions.- 8.7.1 An Illustrative Example.- 8.7.2 Increasing the Number of Decision Variables.- 8.7.3 Dynamic Programming Approach.- 8.7.4 Linear Feedback.- 8.7.5 An Illustrative Example.- 8.8 Exercises.- 9 Nonlinear Model Predictive Control.- 9.1 Nonlinear MPC Versus Linear MPC.- 9.2 Nonlinear Models.- 9.2.1 Empirical Models.- 9.2.2 Fundamental Models.- 9.2.3 Grey-box Models.- 9.2.4 Modelling Example.- 9.3 Solution of the NMPC Problem.- 9.3.1 Problem Formulation.- 9.3.2 Solution.- 9.4 Techniques for Nonlinear Predictive Control.- 9.4.1 Extended Linear MPC.- 9.4.2 Local Models.- 9.4.3 Suboptimal NPMC.- 9.4.4 Use of Short Horizons.- 9.4.5 Decomposition of the Control Sequence.- 9.4.6 Feedback Linearization.- 9.4.7 MPC Based on Volterra Models.- 9.4.8 Neural Networks.- 9.4.9 Commercial Products.- 9.5 Stability and Nonlinear MPC.- 9.6 Case Study: pH Neutralization Process.- 9.6.1 Process Model.- 9.6.2 Results.- 9.7 Exercises.- 10 Model Predictive Control and Hybrid Systems.- 10.1 Hybrid System Modelling.- 10.2 Example: A Jacket Cooled Batch Reactor.- 10.2.1 Mixed Logical Dynamical Systems.- 10.2.2 Example.- 10.3 Model Predictive Control of MLD Systems.- 10.3.1 Branch and Bound Mixed Integer Programming.- 10.3.2 An Illustrative Example.- 10.4 Piecewise Affine Systems.- 10.4.1 Example: Tankwith Different Area Sections.- 10.4.2 Reach Set, Controllable Set, and STG Algorithm.- 10.5 Exercises.- 11 Fast Methods for Implementing Model Predictive Control.- 11.1 Piecewise Affinity of MPC.- 11.2 MPC and Multiparametric Programming.- 11.3 Piecewise Implementation of MPC.- 11.3.1 Illustrative Example: The Double Integrator.- 11.3.2 Nonconstant References and Measurable Disturbances.- 11.3.3 Example.- 11.3.4 The 1-norm and ?-norm Cases.- 11.4 Fast Implementation of MPC forUncertain Systems.- 11.4.1 Example.- 11.4.2 The Closed-Loop Min-max MPC.- 11.5 Approximated Implementation for MPC.- 11.6 Fast Implementation of MPC and Dead Time Considerations.- 11.7 Exercises.- 12 Applications.- 12.1 Solar Power Plant.- 12.1.1 Selftuning GPC Control Strategy.- 12.1.2 Gain Scheduling Generalized Predictive Control.- 12.2 Pilot Plant.- 12.2.1 Plant Description.- 12.2.2 Plant Control.- 12.2.3 Flow Control.- 12.2.4 Temperature Control at the Exchanger Output.- 12.2.5 Temperature Control in the Tank.- 12.2.6 Level Control.- 12.2.7 Remarks.- 12.3 Model Predictive Control in a Sugar Refinery.- 12.4 Olive Oil Mill.- 12.4.1 Plant Description.- 12.4.2 Process Modelling and Validation.- 12.4.3 Controller Synthesis.- 12.4.4 Experimental Results.- 12.5 Mobile Robot.- 12.5.1 Problem Definition.- 12.5.2 Prediction Model.- 12.5.3 Parametrization of the Desired Path.- 12.5.4 Potential Function for Considering Fixed Obstacles.- 12.5.5 The Neural Network Approach.- 12.5.6 Training Phase.- 12.5.7 Results.- A Revision of the Simplex Method.- A.1 Equality Constraints.- A.2 Finding an Initial Solution.- A.3 Inequality Constraints.- B Dynamic Programming and Linear Quadratic Optimal Control.- B.1 LinearQuadratic Problem.- B.2 InfiniteHorizon.- References.
Series Title: Advanced textbooks in control and signal processing.
Responsibility: E.F. Camacho and C. Bordons.
More information:

Reviews

Editorial reviews

Publisher Synopsis

From the reviews of the second edition:"This text is an introduction to model predictive control, a control methodology which has encountered some success in industry, but which still presents many Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/54005742> # Model predictive control
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "54005742" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
   library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
   library:placeOfPublication <http://dbpedia.org/resource/London> ; # London
   schema:about <http://dewey.info/class/629.8/e22/> ;
   schema:about <http://id.worldcat.org/fast/1075040> ; # Predictive control
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://viaf.org/viaf/9955946> ; # Carlos Bordons
   schema:copyrightYear "2004" ;
   schema:creator <http://viaf.org/viaf/61655311> ; # E. F. Camacho
   schema:datePublished "2003" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1063861> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://worldcat.org/issn/1439-2232> ; # Advanced textbooks in control and signal processing.
   schema:name "Model predictive control"@en ;
   schema:productID "54005742" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/54005742#PublicationEvent/london_new_york_springer_2004> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1063861#Agent/springer> ; # Springer
   schema:url <http://catdir.loc.gov/catdir/enhancements/fy0815/2003070755-t.html> ;
   schema:workExample <http://worldcat.org/isbn/9781852336943> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/54005742> ;
    .


Related Entities

<http://dbpedia.org/resource/London> # London
    a schema:Place ;
   schema:name "London" ;
    .

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
   schema:name "New York" ;
    .

<http://id.worldcat.org/fast/1075040> # Predictive control
    a schema:Intangible ;
   schema:name "Predictive control"@en ;
    .

<http://viaf.org/viaf/61655311> # E. F. Camacho
    a schema:Person ;
   schema:familyName "Camacho" ;
   schema:givenName "E. F." ;
   schema:name "E. F. Camacho" ;
    .

<http://viaf.org/viaf/9955946> # Carlos Bordons
    a schema:Person ;
   schema:birthDate "1962" ;
   schema:familyName "Bordons" ;
   schema:givenName "Carlos" ;
   schema:givenName "C." ;
   schema:name "Carlos Bordons" ;
    .

<http://worldcat.org/isbn/9781852336943>
    a schema:ProductModel ;
   schema:isbn "1852336943" ;
   schema:isbn "9781852336943" ;
    .

<http://worldcat.org/issn/1439-2232> # Advanced textbooks in control and signal processing.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/54005742> ; # Model predictive control
   schema:issn "1439-2232" ;
   schema:name "Advanced textbooks in control and signal processing." ;
   schema:name "Advanced textbooks in control and signal processing," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.