skip to content
Modeling a drip irrigation system powered by a renewable energy source Preview this item
ClosePreview this item
Checking...

Modeling a drip irrigation system powered by a renewable energy source

Author: Ahmed M Al-zoheiry
Publisher: Columbus, Ohio : Ohio State University, 2006.
Dissertation: Ph. D. Ohio State University 2006
Edition/Format:   Thesis/dissertation : Document : Thesis/dissertation : eBook   Computer File : English
Database:WorldCat
Summary:
Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Document, Thesis/dissertation, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Ahmed M Al-zoheiry
OCLC Number: 123082395
Notes: Title from first page of PDF file.
Description: 1 online resource (xviii, 193 pages)
Responsibility: by Ahmed M. Al-zoheiry.

Abstract:

Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact of the irrigation system on the environment. A model was developed to simulate and predict the performance of an irrigation system powered by a renewable energy source. Both solar energy and wind energy were considered for the modeling of the system. The solar energy was simulated using the difference between the maximum and the minimum daily temperatures as an indicator of the amount of clouds in the atmosphere. The model is a modification of earlier models and has the advantage of not needing to be calibrated for each new site. Results showed that a model that calibrates it self for the upper and the lower expected values of the solar radiation can be developed using meteorological data such as the location of the site, the daily temperatures, and the minimum relative humidity. ii The wind energy was predicted using the power coefficient of the turbine and statistical representation of the daily wind speeds. The average hourly values of the wind speed were used for finding the distribution constants for the Weibull distribution and Rayleigh distribution. The results showed that the Weibull distribution is more accurate in predicting the expected power output of the turbine when the daily wind speed coefficient of variation (Cv) was less than 0.5. When the Cv is greater than 0.5 the Rayleigh distribution gives better results. A computer model was developed using Visual Basic to model the system and the resulting model was tested and used in comparing the economics of a traditional irrigation system and an irrigation system powered by solar panels. The system powered by the solar panel had a greater total annual cost than the traditional system but the sensitivity analysis performed showed that if the trends in energy prices continue and the prices of the solar panels continue to decrease, the cost for operating the traditional systems will be close to the cost of operating the systems powered by the solar panels in less than a 10 years.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/123082395> # Modeling a drip irrigation system powered by a renewable energy source
    a schema:Book, pto:Web_document, schema:CreativeWork, schema:MediaObject, bgn:Thesis ;
    bgn:inSupportOf "" ;
    library:oclcnum "123082395" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/102008566#Place/columbus_ohio> ; # Columbus, Ohio
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/ohu> ;
    schema:about <http://id.worldcat.org/fast/1094570> ; # Renewable energy sources
    schema:about <http://id.worldcat.org/fast/1062185> ; # Photovoltaic power systems
    schema:about <http://id.loc.gov/authorities/subjects/sh85002482> ; # Agriculture and energy
    schema:about <http://id.loc.gov/authorities/subjects/sh85146874> ; # Wind power
    schema:about <http://experiment.worldcat.org/entity/work/data/102008566#Topic/microirrigation_simulation_methods> ; # Microirrigation--Simulation methods
    schema:about <http://id.loc.gov/authorities/subjects/sh93000144> ; # Photovoltaic power systems
    schema:about <http://id.worldcat.org/fast/1125042> ; # Solar energy in agriculture
    schema:about <http://id.loc.gov/authorities/subjects/sh85124507> ; # Solar energy in agriculture
    schema:about <http://id.loc.gov/authorities/subjects/sh85112837> ; # Renewable energy sources
    schema:about <http://id.worldcat.org/fast/801715> ; # Agriculture and energy
    schema:about <http://id.worldcat.org/fast/1175627> ; # Wind power
    schema:creator <http://experiment.worldcat.org/entity/work/data/102008566#Person/al_zoheiry_ahmed_m> ; # Ahmed M. Al-zoheiry
    schema:datePublished "2006" ;
    schema:description "Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact of the irrigation system on the environment. A model was developed to simulate and predict the performance of an irrigation system powered by a renewable energy source. Both solar energy and wind energy were considered for the modeling of the system. The solar energy was simulated using the difference between the maximum and the minimum daily temperatures as an indicator of the amount of clouds in the atmosphere. The model is a modification of earlier models and has the advantage of not needing to be calibrated for each new site. Results showed that a model that calibrates it self for the upper and the lower expected values of the solar radiation can be developed using meteorological data such as the location of the site, the daily temperatures, and the minimum relative humidity. ii The wind energy was predicted using the power coefficient of the turbine and statistical representation of the daily wind speeds. The average hourly values of the wind speed were used for finding the distribution constants for the Weibull distribution and Rayleigh distribution. The results showed that the Weibull distribution is more accurate in predicting the expected power output of the turbine when the daily wind speed coefficient of variation (Cv) was less than 0.5. When the Cv is greater than 0.5 the Rayleigh distribution gives better results. A computer model was developed using Visual Basic to model the system and the resulting model was tested and used in comparing the economics of a traditional irrigation system and an irrigation system powered by solar panels. The system powered by the solar panel had a greater total annual cost than the traditional system but the sensitivity analysis performed showed that if the trends in energy prices continue and the prices of the solar panels continue to decrease, the cost for operating the traditional systems will be close to the cost of operating the systems powered by the solar panels in less than a 10 years."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/102008566> ;
    schema:inLanguage "en" ;
    schema:name "Modeling a drip irrigation system powered by a renewable energy source"@en ;
    schema:productID "123082395" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/123082395#PublicationEvent/columbus_ohio_ohio_state_university_2006> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/102008566#Agent/ohio_state_university> ; # Ohio State University
    schema:url <http://rave.ohiolink.edu/etdc/view?acc_num=osu1164762929> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/123082395> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/102008566#Agent/ohio_state_university> # Ohio State University
    a bgn:Agent ;
    schema:name "Ohio State University" ;
    .

<http://experiment.worldcat.org/entity/work/data/102008566#Person/al_zoheiry_ahmed_m> # Ahmed M. Al-zoheiry
    a schema:Person ;
    schema:familyName "Al-zoheiry" ;
    schema:givenName "Ahmed M." ;
    schema:name "Ahmed M. Al-zoheiry" ;
    .

<http://experiment.worldcat.org/entity/work/data/102008566#Place/columbus_ohio> # Columbus, Ohio
    a schema:Place ;
    schema:name "Columbus, Ohio" ;
    .

<http://id.loc.gov/authorities/subjects/sh85002482> # Agriculture and energy
    a schema:Intangible ;
    schema:name "Agriculture and energy"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85112837> # Renewable energy sources
    a schema:Intangible ;
    schema:name "Renewable energy sources"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85124507> # Solar energy in agriculture
    a schema:Intangible ;
    schema:name "Solar energy in agriculture"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85146874> # Wind power
    a schema:Intangible ;
    schema:name "Wind power"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh93000144> # Photovoltaic power systems
    a schema:Intangible ;
    schema:name "Photovoltaic power systems"@en ;
    .

<http://id.worldcat.org/fast/1062185> # Photovoltaic power systems
    a schema:Intangible ;
    schema:name "Photovoltaic power systems"@en ;
    .

<http://id.worldcat.org/fast/1094570> # Renewable energy sources
    a schema:Intangible ;
    schema:name "Renewable energy sources"@en ;
    .

<http://id.worldcat.org/fast/1125042> # Solar energy in agriculture
    a schema:Intangible ;
    schema:name "Solar energy in agriculture"@en ;
    .

<http://id.worldcat.org/fast/1175627> # Wind power
    a schema:Intangible ;
    schema:name "Wind power"@en ;
    .

<http://id.worldcat.org/fast/801715> # Agriculture and energy
    a schema:Intangible ;
    schema:name "Agriculture and energy"@en ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.