omitir hasta el contenido
Modeling a drip irrigation system powered by a renewable energy source Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Modeling a drip irrigation system powered by a renewable energy source

Autor: Ahmed M Al-zoheiry
Editorial: Columbus, Ohio : Ohio State University, 2006.
Disertación: Thesis (Ph. D.)--Ohio State University, 2006.
Edición/Formato:   Tesis/disertación : Documento : Tesis de maestría/doctorado : Libro-e   Archivo de computadora : Inglés (eng)
Base de datos:WorldCat
Resumen:
Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de material: Documento, Tesis de maestría/doctorado, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Ahmed M Al-zoheiry
Número OCLC: 123082395
Notas: Title from first page of PDF file.
Descripción: 1 online resource (xviii, 193 p.)
Responsabilidad: by Ahmed M. Al-zoheiry.

Resumen:

Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact of the irrigation system on the environment. A model was developed to simulate and predict the performance of an irrigation system powered by a renewable energy source. Both solar energy and wind energy were considered for the modeling of the system. The solar energy was simulated using the difference between the maximum and the minimum daily temperatures as an indicator of the amount of clouds in the atmosphere. The model is a modification of earlier models and has the advantage of not needing to be calibrated for each new site. Results showed that a model that calibrates it self for the upper and the lower expected values of the solar radiation can be developed using meteorological data such as the location of the site, the daily temperatures, and the minimum relative humidity. ii The wind energy was predicted using the power coefficient of the turbine and statistical representation of the daily wind speeds. The average hourly values of the wind speed were used for finding the distribution constants for the Weibull distribution and Rayleigh distribution. The results showed that the Weibull distribution is more accurate in predicting the expected power output of the turbine when the daily wind speed coefficient of variation (Cv) was less than 0.5. When the Cv is greater than 0.5 the Rayleigh distribution gives better results. A computer model was developed using Visual Basic to model the system and the resulting model was tested and used in comparing the economics of a traditional irrigation system and an irrigation system powered by solar panels. The system powered by the solar panel had a greater total annual cost than the traditional system but the sensitivity analysis performed showed that if the trends in energy prices continue and the prices of the solar panels continue to decrease, the cost for operating the traditional systems will be close to the cost of operating the systems powered by the solar panels in less than a 10 years.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/123082395>
library:oclcnum"123082395"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/123082395>
rdf:typeschema:Book
rdf:typej.2:Thesis
rdf:typej.2:Web_document
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:creator
schema:datePublished"2006"
schema:description"Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact of the irrigation system on the environment. A model was developed to simulate and predict the performance of an irrigation system powered by a renewable energy source. Both solar energy and wind energy were considered for the modeling of the system. The solar energy was simulated using the difference between the maximum and the minimum daily temperatures as an indicator of the amount of clouds in the atmosphere. The model is a modification of earlier models and has the advantage of not needing to be calibrated for each new site. Results showed that a model that calibrates it self for the upper and the lower expected values of the solar radiation can be developed using meteorological data such as the location of the site, the daily temperatures, and the minimum relative humidity. ii The wind energy was predicted using the power coefficient of the turbine and statistical representation of the daily wind speeds. The average hourly values of the wind speed were used for finding the distribution constants for the Weibull distribution and Rayleigh distribution. The results showed that the Weibull distribution is more accurate in predicting the expected power output of the turbine when the daily wind speed coefficient of variation (Cv) was less than 0.5. When the Cv is greater than 0.5 the Rayleigh distribution gives better results. A computer model was developed using Visual Basic to model the system and the resulting model was tested and used in comparing the economics of a traditional irrigation system and an irrigation system powered by solar panels. The system powered by the solar panel had a greater total annual cost than the traditional system but the sensitivity analysis performed showed that if the trends in energy prices continue and the prices of the solar panels continue to decrease, the cost for operating the traditional systems will be close to the cost of operating the systems powered by the solar panels in less than a 10 years."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/102008566>
schema:inLanguage"en"
schema:name"Modeling a drip irrigation system powered by a renewable energy source"@en
schema:numberOfPages"193"
schema:publisher
schema:url
schema:url<http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1164762929>

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.