跳到内容
Modeling a drip irrigation system powered by a renewable energy source 预览资料
关闭预览资料
正在查...

Modeling a drip irrigation system powered by a renewable energy source

著者: Ahmed M Al-zoheiry
出版商: Columbus, Ohio : Ohio State University, 2006.
论文: Thesis (Ph. D.)--Ohio State University, 2006.
版本/格式:   硕士/博士论文 : 文献 : 硕士论文/博士论文 : 电子图书   计算机文档 : 英语
数据库:WorldCat
提要:
Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact  再读一些...
评估:

(尚未评估) 0 附有评论 - 争取成为第一个。

主题
更多类似这样的

 

在线查找

与资料的链接

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

材料类型: 文献, 硕士论文/博士论文, 互联网资源
文件类型: 互联网资源, 计算机文档
所有的著者/提供者: Ahmed M Al-zoheiry
OCLC号码: 123082395
注意: Title from first page of PDF file.
描述: 1 online resource (xviii, 193 p.)
责任: by Ahmed M. Al-zoheiry.

摘要:

Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact of the irrigation system on the environment. A model was developed to simulate and predict the performance of an irrigation system powered by a renewable energy source. Both solar energy and wind energy were considered for the modeling of the system. The solar energy was simulated using the difference between the maximum and the minimum daily temperatures as an indicator of the amount of clouds in the atmosphere. The model is a modification of earlier models and has the advantage of not needing to be calibrated for each new site. Results showed that a model that calibrates it self for the upper and the lower expected values of the solar radiation can be developed using meteorological data such as the location of the site, the daily temperatures, and the minimum relative humidity. ii The wind energy was predicted using the power coefficient of the turbine and statistical representation of the daily wind speeds. The average hourly values of the wind speed were used for finding the distribution constants for the Weibull distribution and Rayleigh distribution. The results showed that the Weibull distribution is more accurate in predicting the expected power output of the turbine when the daily wind speed coefficient of variation (Cv) was less than 0.5. When the Cv is greater than 0.5 the Rayleigh distribution gives better results. A computer model was developed using Visual Basic to model the system and the resulting model was tested and used in comparing the economics of a traditional irrigation system and an irrigation system powered by solar panels. The system powered by the solar panel had a greater total annual cost than the traditional system but the sensitivity analysis performed showed that if the trends in energy prices continue and the prices of the solar panels continue to decrease, the cost for operating the traditional systems will be close to the cost of operating the systems powered by the solar panels in less than a 10 years.

评论

用户提供的评论
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

争取是第一个!
确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


<http://www.worldcat.org/oclc/123082395>
library:oclcnum"123082395"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/123082395>
rdf:typeschema:Book
rdf:typej.2:Thesis
rdf:typej.2:Web_document
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:creator
schema:datePublished"2006"
schema:description"Abstract: Food production is a problem in many of the regains in the world. Today, the process of producing food is very dependent on energy. The dependency on fossil fuels causes the cost of producing crops to increase as the prices of fuel increases. Using a renewable energy sources to power an irrigation system is a mean of decreasing the dependency of food products on the prices of fuel and minimize the impact of the irrigation system on the environment. A model was developed to simulate and predict the performance of an irrigation system powered by a renewable energy source. Both solar energy and wind energy were considered for the modeling of the system. The solar energy was simulated using the difference between the maximum and the minimum daily temperatures as an indicator of the amount of clouds in the atmosphere. The model is a modification of earlier models and has the advantage of not needing to be calibrated for each new site. Results showed that a model that calibrates it self for the upper and the lower expected values of the solar radiation can be developed using meteorological data such as the location of the site, the daily temperatures, and the minimum relative humidity. ii The wind energy was predicted using the power coefficient of the turbine and statistical representation of the daily wind speeds. The average hourly values of the wind speed were used for finding the distribution constants for the Weibull distribution and Rayleigh distribution. The results showed that the Weibull distribution is more accurate in predicting the expected power output of the turbine when the daily wind speed coefficient of variation (Cv) was less than 0.5. When the Cv is greater than 0.5 the Rayleigh distribution gives better results. A computer model was developed using Visual Basic to model the system and the resulting model was tested and used in comparing the economics of a traditional irrigation system and an irrigation system powered by solar panels. The system powered by the solar panel had a greater total annual cost than the traditional system but the sensitivity analysis performed showed that if the trends in energy prices continue and the prices of the solar panels continue to decrease, the cost for operating the traditional systems will be close to the cost of operating the systems powered by the solar panels in less than a 10 years."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/102008566>
schema:inLanguage"en"
schema:name"Modeling a drip irrigation system powered by a renewable energy source"@en
schema:numberOfPages"193"
schema:publisher
schema:url
schema:url<http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1164762929>

Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.