skip to content
Modern geometry : methods and applications. Part I, The geometry of surfaces, transformation groups, and fields Preview this item
ClosePreview this item

Modern geometry : methods and applications. Part I, The geometry of surfaces, transformation groups, and fields

Author: Boris Anatol'evich Dubrovin; Anatolij T Fomenko; Sergej Petrovič Novikov; Robert G Burns
Publisher: New York ; Berlin ; Paris [etc.] : Springer, cop. 1990.
Series: Graduate texts in mathematics, 93
Edition/Format:   Book : English : 2nd edView all editions and formats
Publication:Modern geometry, 1

An introduction to modern geometry which emphasizes applications to other areas of mathematics and theoretical physics. It covers topics including tensors and their differential calculus, the  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Boris Anatol'evich Dubrovin; Anatolij T Fomenko; Sergej Petrovič Novikov; Robert G Burns
ISBN: 0387976639 9780387976631 3540976639 9783540976639
OCLC Number: 468199679
Notes: Bibliogr. p. 459-461. Index.
Description: XV-468 p. : ill. ; 25 cm.
Contents: 1 Geometry in Regions of a Space. Basic Concepts.- x1. Co-ordinate systems.- 1.1. Cartesian co-ordinates in a space.- 1.2. Co-ordinate changes.- x2. Euclidean space.- 2.1. Curves in Euclidean space.- 2.2. Quadratic forms and vectors.- x3. Riemannian and pseudo-Riemannian spaces.- 3.1. Riemannian metrics.- 3.2. The Minkowski metric.- x4. The simplest groups of transformations of Euclidean space.- 4.1. Groups of transformations of a region.- 4.2. Transformations of the plane.- 4.3. The isometries of 3-dimensional Euclidean space.- 4.4. Further examples of transformation groups.- 4.5. Exercises.- x5. The Serret-Frenet formulae.- 5.1. Curvature of curves in the Euclidean plane.- 5.2. Curves in Euclidean 3-space. Curvature and torsion.- 5.3. Orthogonal transformations depending on a parameter.- 5.4. Exercises.- x6. Pseudo-Euclidean spaces.- 6.1. The simplest concepts of the special theory of relativity.- 6.2. Lorentz transformations.- 6.3. Exercises.- 2 The Theory of Surfaces.- x7. Geometry on a surface in space.- 7.1. Co-ordinates on a surface.- 7.2. Tangent planes.- 7.3. The metric on a surface in Euclidean space.- 7.4. Surface area.- 7.5. Exercises.- x8. The second fundamental form.- 8.1. Curvature of curves on a surface in Euclidean space.- 8.2. Invariants of a pair of quadratic forms.- 8.3. Properties of the second fundamental form.- 8.4. Exercises.- x9. The metric on the sphere.- x10. Space-like surfaces in pseudo-Euclidean space.- 10.1. The pseudo-sphere.- 10.2. Curvature of space-like curves in $$ \mathbb{R}_1^3 $$.- x11. The language of complex numbers in geometry.- 11.1. Complex and real co-ordinates.- 11.2. The Hermitian scalar product.- 11.3. Examples of complex transformation groups.- x12. Analytic functions.- 12.1. Complex notation for the element of length, and for the differential of a function.- 12.2. Complex co-ordinate changes.- 12.3. Surfaces in complex space.- x13. The conformal form of the metric on a surface.- 13.1. Isothermal co-ordinates. Gaussian curvature in terms of conformal co-ordinates.- 13.2. Conformal form of the metrics on the sphere and the Lobachevskian plane.- 13.3. Surfaces of constant curvature.- 13.4. Exercises.- x14. Transformation groups as surfaces in N-dimensional space.- 14.1. Co-ordinates in a neighbourhood of the identity.- 14.2. The exponential function with matrix argument.- 14.3. The quaternions.- 14.4. Exercises.- x15. Conformal transformations of Euclidean and pseudo-Euclidean spaces of several dimensions.- 3 Tensors: The Algebraic Theory.- x16. Examples of tensors.- x17. The general definition of a tensor.- 17.1. The transformation rule for the components of a tensor of arbitrary rank.- 17.2. Algebraic operations on tensors.- 17.3. Exercises.- x18. Tensors of type (0, k).- 18.1. Differential notation for tensors with lower indices only.- 18.2. Skew-symmetric tensors of type (0, k).- 18.3. The exterior product of differential forms. The exterior algebra.- 18.4. Skew-symmetric tensors of type (k, 0) (polyvectors). Integrals with respect to anti-commuting variables.- 18.5. Exercises.- x19. Tensors in Riemannian and pseudo-Riemannian spaces.- 19.1. Raising and lowering indices.- 19.2. The eigenvalues of a quadratic form.- 19.3. The operator ?.- 19.4. Tensors in Euclidean space.- 19.5. Exercises.- x20. The crystallographic groups and the finite subgroups of the rotation group of Euclidean 3-space. Examples of invariant tensors.- x21. Rank 2 tensors in pseudo-Euclidean space, and their eigenvalues.- 21.1. Skew-symmetric tensors. The invariants of an electromagnetic field.- 21.2. Symmetric tensors and their eigenvalues. The energy-momentum tensor of an electromagnetic field.- x22. The behaviour of tensors under mappings.- 22.1. The general operation of restriction of tensors with lower indices.- 22.2. Mappings of tangent spaces.- x23. Vector fields.- 23.1. One-parameter groups of diffeomorphisms.- 23.2. The exponential function of a vector field.- 23.3. The Lie derivative.- 23.4. Exercises.- x24. Lie algebras.- 24.1. Lie algebras and vector fields.- 24.2. The fundamental matrix Lie algebras.- 24.3. Linear vector fields.- 24.4. Left-invariant fields defined on transformation groups.- 24.5. Invariant metrics on a transformation group.- 24.6. The classification of the 3-dimensional Lie algebras.- 24.7. The Lie algebras of the conformal groups.- 24.8. Exercises.- 4 The Differential Calculus of Tensors.- x25. The differential calculus of skew-symmetric tensors.- 25.1. The gradient of a skew-symmetric tensor.- 25.2. The exterior derivative of a form.- 25.3. Exercises.- x26. Skew-symmetric tensors and the theory of integration.- 26.1. Integration of differential forms.- 26.2. Examples of integrals of differential forms.- 26.3. The general Stokes formula. Examples.- 26.4. Proof of the general Stokes formula for the cube.- 26.5. Exercises.- x27. Differential forms on complex spaces.- 27.1. The operators d? and d?.- 27.2. Kahlerian metrics. The curvature form.- x28. Covariant differentiation.- 28.1. Euclidean connexions.- 28.2. Covariant differentiation of tensors of arbitrary rank.- x29. Covariant differentiation and the metric.- 29.1. Parallel transport of vector fields.- 29.2. Geodesics.- 29.3. Connexions compatible with the metric.- 29.4. Connexions compatible with a complex structure (Hermitian metric).- 29.5. Exercises.- x30. The curvature tensor.- 30.1. The general curvature tensor.- 30.2. The symmetries of the curvature tensor. The curvature tensor defined by the metric.- 30.3. Examples: The curvature tensor in spaces of dimensions 2 and 3; the curvature tensor of transformation groups.- 30.4. The Peterson-Codazzi equations. Surfaces of constant negative curvature, and the "sine-Gordon" equation.- 30.5. Exercises.- 5 The Elements of the Calculus of Variations.- x31. One-dimensional variational problems.- 31.1. The Euler-Lagrange equations.- 31.2. Basic examples of functional.- x32. Conservation laws.- 32.1. Groups of transformations preserving a given variational problem.- 32.2. Examples. Applications of the conservation laws.- x33. Hamiltonian formalism.- 33.1. Legendre's transformation.- 33.2. Moving co-ordinate frames.- 33.3. The principles of Maupertuis and Fermat.- 33.4. Exercises.- x34. The geometrical theory of phase space.- 34.1. Gradient systems.- 34.2. The Poisson bracket.- 34.3. Canonical transformations.- 34.4. Exercises.- x35. Lagrange surfaces.- 35.1. Bundles of trajectories and the Hamilton-Jacobi equation.- 35.2. Hamiltonians which are first-order homogeneous with respect to the momentum.- x36. The second variation for the equation of the geodesics.- 36.1. The formula for the second variation.- 36.2. Conjugate points and the minimality condition.- 6 The Calculus of Variations in Several Dimensions. Fields and Their Geometric Invariants.- x37. The simplest higher-dimensional variational problems.- 37.1. The Euler-Lagrange equations.- 37.2. The energy-momentum tensor.- 37.3. The equations of an electromagnetic field.- 37.4. The equations of a gravitational field.- 37.5. Soap films.- 37.6. Equilibrium equation for a thin plate.- 37.7. Exercises.- x38. Examples of Lagrangians.- x39. The simplest concepts of the general theory of relativity.- x40. The spinor representations of the groups SO(3) and O(3, 1). Dirac's equation and its properties.- 40.1. Automorphisms of matrix algebras.- 40.2. The spinor representation of the group SO(3).- 40.3. The spinor representation of the Lorentz group.- 40.4. Dirac's equation.- 40.5. Dirac's equation in an electromagnetic field. The operation of charge conjugation.- x41. Covariant differentiation of fields with arbitrary symmetry.- 41.1. Gauge transformations. Gauge-invariant Lagrangians.- 41.2. The curvature form.- 41.3. Basic examples.- x42. Examples of gauge-invariant functionals. Maxwell's equations and the Yang-Mills equation. Functionals with identically zero variational derivative (characteristic classes).
Series Title: Graduate texts in mathematics, 93
Other Titles: Sovremennaja geometrija : metody i priloz̆enija.
geometry of surfaces, transformation groups, and fields
Responsibility: B. A. Dubrovin, A. T. Fomenko, S. P. Novikov ; transl. by Robert G. Burns.
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

schema:givenName"Boris Anatol'evich"
schema:name"Dubrovin, Boris Anatol'evich."
schema:bookEdition"2nd ed."
schema:name"Modern geometry : methods and applications. Part I, The geometry of surfaces, transformation groups, and fields"
schema:name"geometry of surfaces, transformation groups, and fields"

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.