skip to content
Molecular and supramolecular information processing : from molecular switches to logic systems Preview this item
ClosePreview this item

Molecular and supramolecular information processing : from molecular switches to logic systems

Author: Evgeny Katz
Publisher: Weinheim : Wiley-VCH, ©2012.
Edition/Format:   Print book : EnglishView all editions and formats

Edited by a renowned and much cited chemist, this book covers the whole span of molecular computers that are based on non-biological systems. The contributions by all the major scientists in the  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Evgeny Katz
ISBN: 9783527331956 3527331956 9783527645466 3527645462 9783527645459 3527645454 9783527645473 3527645470 9783527645442 3527645446
OCLC Number: 779864991
Description: xviii, 363 pages : illustrations (some color) ; 25 cm
Contents: <p>Preface XIII <p>List of Contributors XV <p>1 Molecular Information Processing: from Single Molecules toSupramolecular Systems and Interfaces from Algorithms toDevices Editorial Introduction 1 Evgeny Katz and Vera Bocharova <p>References 7 <p>2 From Sensors to Molecular Logic: A Journey 11 A. Prasanna de Silva <p>2.1 Introduction 11 <p>2.2 Designing Luminescent Switching Systems 11 <p>2.3 Converting Sensing/Switching into Logic 13 <p>2.4 Generalizing Logic 15 <p>2.5 Expanding Logic 16 <p>2.6 Utilizing Logic 17 <p>2.7 Bringing in Physical Inputs 20 <p>2.8 Summary and Outlook 21 <p>Acknowledgments 21 <p>References 21 <p>3 Binary Logic with Synthetic Molecular and SupramolecularSpecies 25 Monica Semeraro, Massimo Baroncini, and AlbertoCredi <p>3.1 Introduction 25 <p>3.2 Combinational Logic Gates and Circuits 27 <p>3.3 Sequential Logic Circuits 41 <p>3.4 Summary and Outlook 48 <p>Acknowledgments 49 <p>References 49 <p>4 Photonically Switched Molecular Logic Devices53 Joakim Andreasson and Devens Gust <p>4.1 Introduction 53 <p>4.2 Photochromic Molecules 54 <p>4.3 Photonic Control of Energy and Electron Transfer Reactions55 <p>4.4 Boolean Logic Gates 61 <p>4.5 Advanced Logic Functions 64 <p>4.6 Conclusion 75 <p>References 76 <p>5 Engineering Luminescent Molecules with Sensing and LogicCapabilities 79 David C. Magri <p>5.1 Introduction 79 <p>5.2 Engineering Luminescent Molecules 80 <p>5.3 Logic Gates with the Same Modules in Different Arrangements83 <p>5.4 Consolidating AND Logic 84 <p>5.5 Lab-on-a-Molecule Systems 87 <p>5.6 Redox-Fluorescent Logic Gates 90 <p>5.7 Summary and Perspectives 95 <p>References 96 <p>6 Supramolecular Assemblies for Information Processing99 Catia Parente Carvalho and Uwe Pischel <p>6.1 Introduction 99 <p>6.2 Recognition of Metal Ion Inputs by Crown Ethers 100 <p>6.3 Hydrogen-Bonded Supramolecular Assemblies as Logic Devices102 <p>6.4 Molecular Logic Gates with [2]Pseudorotaxane- and[2]Rotaxane-Based Switches 103 <p>6.5 Supramolecular Host-Guest Complexes with Cyclodextrins andCucurbiturils 110 <p>6.6 Summary 116 <p>Acknowledgments 117 <p>References 117 <p>7 Hybrid Semiconducting Materials: New Perspectives forMolecular-Scale Information Processing 121 Sylwia Gaw??eda, Remigiusz Kowalik,Przemys aw Kwolek, Wojciech Macyk, Justyna Mech,Marek Oszajca, Agnieszka Podborska, and KonradSzaci owski <p>7.1 Introduction 121 <p>7.2 Synthesis of Semiconducting Thin Layers and Nanoparticles122 <p>7.3 Electrochemical Deposition 125 <p>7.4 Organic Semiconductors toward Hybrid Organic/InorganicMaterials 136 <p>7.5 Mechanisms of Photocurrent Switching Phenomena 142 <p>7.6 Digital Devices Based on PEPS Effect 161 <p>7.7 Concluding Remarks 167 <p>Acknowledgments 168 <p>References 168 <p>8 Toward Arithmetic Circuits in Subexcitable ChemicalMedia 175 Andrew Adamatzky, Ben De Lacy Costello, and JulianHolley <p>8.1 Awakening Gates in Chemical Media 175 <p>8.2 Collision-Based Computing 176 <p>8.3 Localizations in Subexcitable BZ Medium 176 <p>8.4 BZ Vesicles 180 <p>8.5 Interaction Between Wave Fragments 181 <p>8.6 Universality and Polymorphism 183 <p>8.7 Binary Adder 186 <p>8.8 Regular and Irregular BZ Disc Networks 193 <p>8.9 Memory Cells with BZ Discs 201 <p>8.10 Conclusion 204 <p>Acknowledgments 204 <p>References 205 <p>9 High-Concentration Chemical Computing Techniques forSolving Hard-To-Solve Problems, and their Relation to NumericalOptimization, Neural Computing, Reasoning under Uncertainty, andFreedom of Choice 209 Vladik Kreinovich and Olac Fuentes <p>9.1 What are Hard-To-Solve Problems and Why Solving Even One ofThem is Important 209 <p>9.2 How Chemical Computing Can Solve a Hard-To-Solve Problem ofPropositional Satisfiability 218 <p>9.3 The Resulting Method for Solving Hard Problems is Related toNumerical Optimization, Neural Computing, Reasoning underUncertainty, and Freedom of Choice 228 <p>Acknowledgments 234 <p>References 234 <p>10 All Kinds of Behavior are Possible in Chemical Kinetics: ATheorem and its Potential Applications to Chemical Computing237 Vladik Kreinovich <p>10.1 Introduction 237 <p>10.2 Main Result 239 <p>10.3 Proof 246 <p>Acknowledgments 256 <p>References 257 <p>11 Kabbalistic Leibnizian Automata for Simulating theUniverse 259 Andrew Schumann <p>11.1 Introduction 259 <p>11.2 Historical Background of Kabbalistic LeibnizianAutomata 259 <p>11.3 Proof-Theoretic Cellular Automata 264 <p>11.4 The Proof-Theoretic Cellular Automaton forBelousov Zhabotinsky Reaction 268 <p>11.5 The Proof-Theoretic Cellular Automaton for Dynamics ofPlasmodium of Physarum polycephalum 271 <p>11.6 Unconventional Computing as a Novel Paradigm in NaturalSciences 276 <p>11.7 Conclusion 278 <p>Acknowledgments 278 <p>References 278 <p>12 Approaches to Control of Noise in Chemical and BiochemicalInformation and Signal Processing 281 Vladimir Privman <p>12.1 Introduction 281 <p>12.2 From Chemical Information-Processing Gates to Networks283 <p>12.3 Noise Handling at the Gate Level and Beyond 286 <p>12.4 Optimization of AND Gates 290 <p>12.5 Networking of Gates 294 <p>12.6 Conclusions and Challenges 296 <p>Acknowledgments 297 <p>References 297 <p>13 Electrochemistry, Emergent Patterns, and InorganicIntelligent Response 305 Saman Sadeghi and Michael Thompson <p>13.1 Introduction 305 <p>13.2 Patten Formation in Complex Systems 306 <p>13.3 Intelligent Response and Pattern Formation 308 <p>13.4 Artificial Cognitive Materials 314 <p>13.5 An Intelligent Electrochemical Platform 315 <p>13.6 From Chemistry to Brain Dynamics 321 <p>13.7 Final Remarks 327 <p>References 328 <p>14 Electrode Interfaces Switchable by Physical and ChemicalSignals Operating as a Platform for Information Processing333 Evgeny Katz <p>14.1 Introduction 333 <p>14.2 Light-Switchable Modified Electrodes Based onPhotoisomerizable Materials 334 <p>14.3 Magnetoswitchable Electrodes Utilizing FunctionalizedMagnetic Nanoparticles or Nanowires 336 <p>14.4 Potential-Switchable Modified Electrodes Based onElectrochemical Transformations of Functional Interfaces 339 <p>14.5 Chemically/Biochemically Switchable Electrodes and TheirCoupling with Biomolecular Computing Systems 343 <p>14.6 Summary and Outlook 350 <p>Acknowledgments 351 <p>References 352 <p>15 Conclusions and Perspectives 355 Evgeny Katz <p>References 357 <p>Index 359
Responsibility: edited by Evgeny Katz.
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


All user tags (1)

View most popular tags as: tag list | tag cloud

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

schema:name"Chemistry, Physical and theoretical--Data processing."@en
schema:name"Molecular and supramolecular information processing : from molecular switches to logic systems"@en

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.