skip to content
Morse theoretic methods in nonlinear analysis and in symplectic topology Preview this item
ClosePreview this item

Morse theoretic methods in nonlinear analysis and in symplectic topology

Author: Paul Ian Biran; Octavian Cornea; François Lalonde
Publisher: Dordrecht : Springer, cop. 2006.
Series: NATO sciences series. II, Mathematics, physics and chemistry, vol. 217
Edition/Format:   Print book : Conference publication : EnglishView all editions and formats

Proceedings of the NATO Advanced Study Institute on Morse Theoretic Methods in Nonlinear Analysis and in Symplectic Topology, held in Montreal, Canada, from 21 June to 2 July 2004.


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Material Type: Conference publication
Document Type: Book
All Authors / Contributors: Paul Ian Biran; Octavian Cornea; François Lalonde
ISBN: 1402042728 9781402042720
OCLC Number: 470407399
Description: 1 vol. (XIV-462) : ill. ; 25 cm.
Contents: Preface.Contributors. Lectures on the Morse Complex for Infinite-Dimensional Manifolds; A. Abbondandolo and P. Majer.-1. A few facts from hyperbolic dynamics.-1.1 Adapted norms .-1.2 Linear stable and unstable spaces of an asymptotically hyperbolic path.-1.3 Morse vector fields.- 1.4 Local dynamics near a hyperbolic rest point; 1.5 Local stable and unstable manifolds.- 1.6 The Grobman - Hartman linearization theorem.-1.7 Global stable and unstable manifolds.- 2 The Morse complex in the case of finite Morse indices.- 2.1 The Palais - Smale condition.-2.2 The Morse - Smale condition .-2.3 The assumptions .- 2.4 Forward compactness.- 2.5 Consequences of compactness and transversality.- 2.6 Cellular filtrations.- 2.7 The Morse complex.- 2.8 Representation of $\delta$* in terms of intersection numbers.- 2.9 How to remove the assumption (A8).- 2.10 Morse functions on Hilbert manifolds.-2.11 Basic results in transversality theory .- 2.12 Genericity of the Morse - Smale condition.-2.13 Invariance of the Morse complex.- 3 The Morse complex in the case of infinite Morse indices.- 3.1 The program.-3.2 Fredholm pairs and compact perturbations of linear subspaces.- 3.3 Finite-dimensional intersections.-3.4 Essential subbundles.- 3.5 Orientations.- 3.6 Compactness .- 3.7 Two-dimensional intersections .-3.8 The Morse complex.- Bibliographical note.- Notes on Floer Homology and Loop Space Homology; A. Abbondandolo and M. Schwarz.- 1 Introduction.- 2 Main result.-2.1 Loop space homology.-2.2 Floer homology for the cotangent bundle.- 3 Ring structures and ring-homomorphisms.-3.1 The pair-of-pants product.- 3.2 The ring homomorphisms between free loop space Floer homology and based loop space Floer homology and classical homology.-4 Morse-homology on the loop spaces $\Lambda$Q and $\Omega$Q, and the isomorphism.-5 Products in Morse-homology .-5.1 Ring isomorphism between Morse homology and Floer homology.- Homotopical Dynamics in Symplectic Topology; J.-F. Barraud and O. Cornea.- 1 Introduction .-2 Elements of Morse theory .-2.1 Connecting manifolds.-2.2 Operations.-3 Applications to symplectic topology.- 3.1 Bounded orbits .-3.2 Detection of pseudoholomorphic strips and Hofer's norm.- Morse Theory, Graphs, and String Topology; R. L. Cohen.-1 Graphs, Morse theory, and cohomology operations.-2 String topology .-3 A Morse theoretic view of string topology.- 4 Cylindrical holomorphic curves in the cotangent bundle.- Topology of Robot Motion Planning; M. Farber.-1.Introduction .-2 First examples of configuration spaces .-3 Varieties of polygonal linkages.-3.1 Short and long subsets .-3.2 Poincare polynomial of M(a) .-4 Universality theorems for configuration spaces .-5 A remark about configuration spaces in robotics .-6 The motion planning problem.-7 Tame motion planning algorithms.-8 The Schwarz genus.- 9 The second notion of topological complexity.-10 Homotopy invariance.- 11 Order of instability of a motion planning algorithm.-12 Random motion planning algorithms.- 13 Equality theorem.-14 An upper bound for TC(X).-15 A cohomological lower bound for TC(X) .-16 Examples .-17 Simultaneous control of many systems.-18 Another inequality relating TC(X) to the usual category .-19 Topological complexity of bouquets.-20 A general recipe to construct a motion planning algorithm.-21 How difficult is to avoid collisions in $\mathbb{R}$m? .-22 The case m = 2.- 23 TC(F($\mathbb{R}$m; n) in the case m $\geq$ 3 odd .- 24 Shade.-25 Illuminating the complement of the braid arrangement .-26 A quadratic motion planning algorithm in F($\mathbb{R}$m; n).-27 Configuration spaces of graphs.-28 Motion planning in projective spaces .-29 Nonsingular maps.- 30 TC(($\mathbb{R}$Pn) and the immersion problem.-31 Some open problems.- Application of Floer Homology of Langrangian Submanifolds to Symplectic Topology;K. Fukaya.- 1 Introduction.- 2 Lagrangian submanifold of $\mathbb{C}$n .-3 Perturbing Cauchy - Riemann equation.- 4 Maslov index of Lagrangian submanifold with vanishing second Betti number.-5 Floer homology and a spectral sequence .-6 Homology of loop space and Chas - Sullivan bracket .-7 Iterated integral and Gerstenhaber bracket.- 8 A$_\infty$ deformation of de Rham complex.- 9 S1 equivariant homology of loop space and cyclic A1 algebra .-10 L$_\infty$ structure on H(S1 $\times$ Sn; $\mathbb{Q}$).-11 Lagrangian submanifolds of $\mathbb{C}$3 .-12 Aspherical Lagrangian submanifolds .-13 Lagrangian submanifolds homotopy equivalent to S1 $\times$ S2m .-14 Lagrangian submanifolds of $\mathbb{C}$Pn .- The $\mathcal{LS}$-Index: A Survey; M. Izydorek.- 1 Introduction .-2 The $\mathcal{LS}$-index.-2.1 Basic definitions and facts.-2.2 Spectra .-2.3 The $\mathcal{LS}$-index .- 3 Cohomology of spectra .-4 Attractors, repellers and Morse decompositions .- 5 Equivariant $\mathcal{LS}$-flows and the G-$\mathcal{LS}$-index.-5.1 Symmetries.-5.2 Isolating neighbourhoods and the equivariant $\mathcal{LS}$-index .-6 Applications.-6.1 A general setting .-6.2 Applications of the $\mathcal{LS}$-index .-6.3 Applications of the cohomological $\mathcal{LS}$-index .-6.4 Applications of the equivariant LS-index.- Lectures on Floer Theory and Spectral Invariants of Hamiltonian Flows; Y.-G. Oh.- 1 Introduction .-2 The free loop space and the action functional.-2.1 The free loop space and the S1-action in general.-2.2 The free loop space of symplectic manifolds.-2.3 The Novikov covering.-2.4 Perturbed action functionals and their action spectra.-2.5 The L2-gradient flow and perturbed Cauchy - Riemann equations.-2.6 Comparison of two Cauchy - Riemann equations.-3 Floer complex and the Novikov ring.-3.1 Novikov - Floer chains and the Novikov ring.-3.2 Definition of the Floer boundary map.-3.3 Definition of the Floer chain map.-3.4 Semi-positivity and transversality.-3.5 Composition law of Floer's chain maps.-4 Energy estimates and Hofer's geometry.- 4.1 Energy estimates and the action level changes.-4.2 Energy estimates and Hofer's norm.-4.3 Level changes of Floer chains under the homotopy .-4.4 The $\epsilon$-regularity type invariants .-5 Definition of spectral invariants and their axioms.-5.1 Floer complex of a small Morse function.-5.2 Definition of spectral invariants.-5.3 Axioms of spectral invariants.-6 The spectrality axiom.-6.1 A consequence of the nondegenerate spectrality axiom.-6.2 Spectrality axiom for the rational case.-6.3 Spectrality for the irrational case.-7 Pants product and the triangle inequality.-7.1 Quantum cohomology in the chain level.-7.2 Grading convention.-7.3 Hamiltonian fibrations and the pants product .- 7.4 Proof of the triangle inequality.-8 Spectral norm of Hamiltonian diffeomorphisms.-8.1 Construction of the spectral norm.-8.2 The $\epsilon$-regularity theorem and its consequences.-8.3 Proof of nondegeneracy.-9 Applications to Hofer geometry of Ham(M;$\omega$).-9.1 Quasi-autonomous Hamiltonians and the minimality conjecture.- 9.2 Length minimizing criterion via $\rho$(H; 1).-9.3 Canonical fundamental Floer cycles.-9.4 The case of autonomous Hamiltonians.-10 Remarks on the transversality for general (M;$omega$).- A Proof of the index formula.- Floer Homology, Dynamics and Groups; L. Polterovich.-1 Hamiltonian actions of finitely generated groups.-1.1 The group of Hamiltonian diffeomorphisms.-1.2 The no-torsion theorem.-1.3 Distortion in normed groups .-1.4 The No-Distortion Theorem.-1.5 The Zimmer program.- 2 Floer theory in action.-2.1 A brief sketch of Floer theory .-2.2 Width and torsion.-2.3 A geometry on Ham(M;$\omega$).-2.4 Width and distortion.-2.5 More remarks on the Zimmer program.-3 The Calabi quasi-morphism and related topics.-3.1 Extending the Calabi homomorphism.-3.2 Introducing quasi-morphisms.-3.3 Quasi-morphisms on Ham(M;$\omega$).-3.4 Distortion in Hofer's norm on Ham(M;$\omega$).- 3.5 Existence and uniqueness of Calabi quasi-morphisms.-3.6 "Hyperbolic" features of Ham(M;$\omega$)? .-3.7 From $\pi$1(M) to Diff0(M;$\Omega$).- Symplectic topology and Hamilton - Jacobi equations; C. Viterbo.- 1 Introduction to symplectic geometry and generating functions.-1.1 Uniqueness and first symplectic invariants.-2 The calculus of critical level sets.-2.1 The case of GFQI.-2.2 Applications.-3 Hamilton - Jacobi equations and generating functions.-4 Coupled Hamilton - Jacobi equations.-Index.
Series Title: NATO sciences series. II, Mathematics, physics and chemistry, vol. 217
Responsibility: [procedding of the NATO advanced study institute on Morse theoretic methods in nonlinear analysis and symplectic topology, Montréal, Canada, July 2004 ; edited by Paul Biran, ... Octav Cornea, ... François Lalonde, ...
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Morse theoretic methods in nonlinear analysis and in symplectic topology
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "470407399" ;
   library:placeOfPublication <> ; # Dordrecht
   library:placeOfPublication <> ;
   schema:about <> ;
   schema:about <> ; # Morse, Théorie de--Congrès
   schema:about <> ; # Topologie symplectique et de contact--Congrès
   schema:about <> ; # théorie de Morse
   schema:author <> ; # NATO Advanced Study Institute and Séminaire De Mathématiques Supérieures on Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology (2004 : Montréal, Canada)
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "op." ;
   schema:datePublished "2006" ;
   schema:editor <> ; # François Lalonde
   schema:editor <> ; # Octavian Cornea
   schema:editor <> ; # Paul Ian Biran
   schema:exampleOfWork <> ;
   schema:genre "Conference publication"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <> ; # NATO sciences series. II, Mathematics, physics and chemistry ;
   schema:name "Morse theoretic methods in nonlinear analysis and in symplectic topology" ;
   schema:productID "470407399" ;
   schema:publication <> ;
   schema:publisher <> ; # Springer
   schema:workExample <> ;
   wdrs:describedby <> ;

Related Entities

<> # NATO Advanced Study Institute and Séminaire De Mathématiques Supérieures on Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology (2004 : Montréal, Canada)
    a bgn:Meeting, schema:Event ;
   schema:location <> ; # Montréal, Canada)
   schema:name "NATO Advanced Study Institute and Séminaire De Mathématiques Supérieures on Morse Theoretic Methods in Nonlinear Analysis and Symplectic Topology (2004 : Montréal, Canada)" ;

<> # Octavian Cornea
    a schema:Person ;
   schema:birthDate "1966" ;
   schema:deathDate "" ;
   schema:familyName "Cornea" ;
   schema:givenName "Octavian" ;
   schema:name "Octavian Cornea" ;

<> # François Lalonde
    a schema:Person ;
   schema:familyName "Lalonde" ;
   schema:givenName "François" ;
   schema:name "François Lalonde" ;

<> # Montréal, Canada)
    a schema:Place ;
   schema:name "Montréal, Canada)" ;

<> # NATO sciences series. II, Mathematics, physics and chemistry ;
    a bgn:PublicationSeries ;
   schema:hasPart <> ; # Morse theoretic methods in nonlinear analysis and in symplectic topology
   schema:name "NATO sciences series. II, Mathematics, physics and chemistry ;" ;

<> # Morse, Théorie de--Congrès
    a schema:Intangible ;
   schema:name "Morse, Théorie de--Congrès" ;

<> # Topologie symplectique et de contact--Congrès
    a schema:Intangible ;
   schema:name "Topologie symplectique et de contact--Congrès" ;

<> # Paul Ian Biran
    a schema:Person ;
   schema:birthDate "1969" ;
   schema:deathDate "" ;
   schema:familyName "Biran" ;
   schema:givenName "Paul Ian" ;
   schema:name "Paul Ian Biran" ;

    a schema:ProductModel ;
   schema:isbn "1402042728" ;
   schema:isbn "9781402042720" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.