컨텐츠로 이동
Mouvement brownien plan, SLE, invariance conforme et dimensions fractales 해당 항목을 미리보기
닫기해당 항목을 미리보기
확인중입니다…

Mouvement brownien plan, SLE, invariance conforme et dimensions fractales

저자: Vincent Beffara; Wendelin Werner; Université de Paris-Sud.
출판사: [S.l.] : [s.n.], 2003.
논문: Thèse doctorat : Mathématiques : Paris 11 : 2003.
판/형식:   주제/주장 : 눈문/학위논문 : 영어
데이터베이스:WorldCat
요약:
Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre
평가:

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

주제
다음과 같습니다:

 

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중

상세정보

자료 유형: 눈문/학위논문
문서 형식:
모든 저자 / 참여자: Vincent Beffara; Wendelin Werner; Université de Paris-Sud.
OCLC 번호: 492220703
메모: Thèse rédigée majoritairement en anglais.
설명: 135 p. : ill. ; 30 cm.
책임: Vincent Beffara ; sous la dir. de Wendelin Werner.

초록:

Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre moitié; l'ensemble des point pivots d'angle donné (suffisamment petit) est alors de dimension de Hausdorff strictement positive. Concernant le SLE, le principal résultat obtenu dans cette thèse est le calcul de la dimension de Hausdorff de la courbe qui l'engendre (qui est égale à un plus la huitième partie du paramètre), et ceci pour tout paramètre positif différent de quatre et inférieur à huit. On s'intéresse également au problème de la généralisation du processus SLE à des surfaces non simplement connexes; on montre que cela est faisable pour deux valeurs particulières du paramètre (six et huit tiers), mais que l'on perd la propriété d'universalité du SLE usuel.

This thesis is dedicated to the study of various geometric properties of planar Brownian motion and the SLE process (also known as stochastic Loewner evolution). We prove that, on a typical planar Brownian path, there almost surely exist "pivoting" points, i.e. cut-points around which one half of the curve can rotate by a positive angle without ever intersecting the other half of the path; the set of all pivoting points of a given positive (small enough) angle is then of positive Hausdorff dimension. About SLE, the main result we obtain in this thesis is the computation of the Hausdorff dimension of the curve generating it (the dimension is equal to one plus one eighth of the parameter), for any positive parameter smaller than eight and different from four. We also study the problem of the generalization of the SLE process to non-simply connected surfaces; we show that the construction is doable for two particular values of the parameter (six and eight thirds), but the universality property of usual SLE 1S then lost.

리뷰

사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…

태그

첫번째 되기

유사 항목

관련 주제:(1)

요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

링크된 데이터


<http://www.worldcat.org/oclc/492220703>
library:oclcnum"492220703"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/492220703>
rdf:typeschema:Book
rdf:typej.2:Thesis
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2003"
schema:description"Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre moitié; l'ensemble des point pivots d'angle donné (suffisamment petit) est alors de dimension de Hausdorff strictement positive. Concernant le SLE, le principal résultat obtenu dans cette thèse est le calcul de la dimension de Hausdorff de la courbe qui l'engendre (qui est égale à un plus la huitième partie du paramètre), et ceci pour tout paramètre positif différent de quatre et inférieur à huit. On s'intéresse également au problème de la généralisation du processus SLE à des surfaces non simplement connexes; on montre que cela est faisable pour deux valeurs particulières du paramètre (six et huit tiers), mais que l'on perd la propriété d'universalité du SLE usuel."
schema:description"This thesis is dedicated to the study of various geometric properties of planar Brownian motion and the SLE process (also known as stochastic Loewner evolution). We prove that, on a typical planar Brownian path, there almost surely exist "pivoting" points, i.e. cut-points around which one half of the curve can rotate by a positive angle without ever intersecting the other half of the path; the set of all pivoting points of a given positive (small enough) angle is then of positive Hausdorff dimension. About SLE, the main result we obtain in this thesis is the computation of the Hausdorff dimension of the curve generating it (the dimension is equal to one plus one eighth of the parameter), for any positive parameter smaller than eight and different from four. We also study the problem of the generalization of the SLE process to non-simply connected surfaces; we show that the construction is doable for two particular values of the parameter (six and eight thirds), but the universality property of usual SLE 1S then lost."
schema:exampleOfWork<http://worldcat.org/entity/work/id/367030578>
schema:inLanguage"en"
schema:name"Mouvement brownien plan, SLE, invariance conforme et dimensions fractales"
schema:numberOfPages"135"
schema:publisher
schema:url

Content-negotiable representations

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.