pular para conteúdo
Mouvement brownien plan, SLE, invariance conforme et dimensions fractales Ver prévia deste item
FecharVer prévia deste item
Checando...

Mouvement brownien plan, SLE, invariance conforme et dimensions fractales

Autor: Vincent Beffara; Wendelin Werner; Université de Paris-Sud.
Editora: [S.l.] : [s.n.], 2003.
Dissertação: Thèse doctorat : Mathématiques : Paris 11 : 2003.
Edição/Formato   Tese/dissertação : Tese/dissertação : Inglês
Base de Dados:WorldCat
Resumo:
Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Tipo de Material: Tese/dissertação
Tipo de Documento: Livro
Todos os Autores / Contribuintes: Vincent Beffara; Wendelin Werner; Université de Paris-Sud.
Número OCLC: 492220703
Notas: Thèse rédigée majoritairement en anglais.
Descrição: 135 p. : ill. ; 30 cm.
Responsabilidade: Vincent Beffara ; sous la dir. de Wendelin Werner.

Resumo:

Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre moitié; l'ensemble des point pivots d'angle donné (suffisamment petit) est alors de dimension de Hausdorff strictement positive. Concernant le SLE, le principal résultat obtenu dans cette thèse est le calcul de la dimension de Hausdorff de la courbe qui l'engendre (qui est égale à un plus la huitième partie du paramètre), et ceci pour tout paramètre positif différent de quatre et inférieur à huit. On s'intéresse également au problème de la généralisation du processus SLE à des surfaces non simplement connexes; on montre que cela est faisable pour deux valeurs particulières du paramètre (six et huit tiers), mais que l'on perd la propriété d'universalité du SLE usuel.

This thesis is dedicated to the study of various geometric properties of planar Brownian motion and the SLE process (also known as stochastic Loewner evolution). We prove that, on a typical planar Brownian path, there almost surely exist "pivoting" points, i.e. cut-points around which one half of the curve can rotate by a positive angle without ever intersecting the other half of the path; the set of all pivoting points of a given positive (small enough) angle is then of positive Hausdorff dimension. About SLE, the main result we obtain in this thesis is the computation of the Hausdorff dimension of the curve generating it (the dimension is equal to one plus one eighth of the parameter), for any positive parameter smaller than eight and different from four. We also study the problem of the generalization of the SLE process to non-simply connected surfaces; we show that the construction is doable for two particular values of the parameter (six and eight thirds), but the universality property of usual SLE 1S then lost.

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.

Ítens Similares

Assuntos Relacionados:(1)

Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/492220703>
bgn:inSupportOf"Thèse doctorat : Mathématiques : Paris 11 : 2003."
library:oclcnum"492220703"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typebgn:Thesis
rdf:valueUnknown value: deg
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2003"
schema:description"Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre moitié; l'ensemble des point pivots d'angle donné (suffisamment petit) est alors de dimension de Hausdorff strictement positive. Concernant le SLE, le principal résultat obtenu dans cette thèse est le calcul de la dimension de Hausdorff de la courbe qui l'engendre (qui est égale à un plus la huitième partie du paramètre), et ceci pour tout paramètre positif différent de quatre et inférieur à huit. On s'intéresse également au problème de la généralisation du processus SLE à des surfaces non simplement connexes; on montre que cela est faisable pour deux valeurs particulières du paramètre (six et huit tiers), mais que l'on perd la propriété d'universalité du SLE usuel."
schema:description"This thesis is dedicated to the study of various geometric properties of planar Brownian motion and the SLE process (also known as stochastic Loewner evolution). We prove that, on a typical planar Brownian path, there almost surely exist "pivoting" points, i.e. cut-points around which one half of the curve can rotate by a positive angle without ever intersecting the other half of the path; the set of all pivoting points of a given positive (small enough) angle is then of positive Hausdorff dimension. About SLE, the main result we obtain in this thesis is the computation of the Hausdorff dimension of the curve generating it (the dimension is equal to one plus one eighth of the parameter), for any positive parameter smaller than eight and different from four. We also study the problem of the generalization of the SLE process to non-simply connected surfaces; we show that the construction is doable for two particular values of the parameter (six and eight thirds), but the universality property of usual SLE 1S then lost."
schema:exampleOfWork<http://worldcat.org/entity/work/id/367030578>
schema:inLanguage"en"
schema:name"Mouvement brownien plan, SLE, invariance conforme et dimensions fractales"
schema:numberOfPages"135"
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.