跳到内容
Mouvement brownien plan, SLE, invariance conforme et dimensions fractales 预览资料
关闭预览资料
正在查...

Mouvement brownien plan, SLE, invariance conforme et dimensions fractales

著者: Vincent Beffara; Wendelin Werner; Université de Paris-Sud.
出版商: [S.l.] : [s.n.], 2003.
论文: Thèse doctorat : Mathématiques : Paris 11 : 2003.
版本/格式:   硕士/博士论文 : 硕士论文/博士论文 : 英语
数据库:WorldCat
提要:
Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre
评估:

(尚未评估) 0 附有评论 - 争取成为第一个。

主题
更多类似这样的

 

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

材料类型: 硕士论文/博士论文
文件类型:
所有的著者/提供者: Vincent Beffara; Wendelin Werner; Université de Paris-Sud.
OCLC号码: 492220703
注意: Thèse rédigée majoritairement en anglais.
描述: 135 p. : ill. ; 30 cm.
责任: Vincent Beffara ; sous la dir. de Wendelin Werner.

摘要:

Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre moitié; l'ensemble des point pivots d'angle donné (suffisamment petit) est alors de dimension de Hausdorff strictement positive. Concernant le SLE, le principal résultat obtenu dans cette thèse est le calcul de la dimension de Hausdorff de la courbe qui l'engendre (qui est égale à un plus la huitième partie du paramètre), et ceci pour tout paramètre positif différent de quatre et inférieur à huit. On s'intéresse également au problème de la généralisation du processus SLE à des surfaces non simplement connexes; on montre que cela est faisable pour deux valeurs particulières du paramètre (six et huit tiers), mais que l'on perd la propriété d'universalité du SLE usuel.

This thesis is dedicated to the study of various geometric properties of planar Brownian motion and the SLE process (also known as stochastic Loewner evolution). We prove that, on a typical planar Brownian path, there almost surely exist "pivoting" points, i.e. cut-points around which one half of the curve can rotate by a positive angle without ever intersecting the other half of the path; the set of all pivoting points of a given positive (small enough) angle is then of positive Hausdorff dimension. About SLE, the main result we obtain in this thesis is the computation of the Hausdorff dimension of the curve generating it (the dimension is equal to one plus one eighth of the parameter), for any positive parameter smaller than eight and different from four. We also study the problem of the generalization of the SLE process to non-simply connected surfaces; we show that the construction is doable for two particular values of the parameter (six and eight thirds), but the universality property of usual SLE 1S then lost.

评论

用户提供的评论
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

争取是第一个!

相似资料

相关主题:(1)

确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


<http://www.worldcat.org/oclc/492220703>
bgn:inSupportOf"Thèse doctorat : Mathématiques : Paris 11 : 2003."
library:oclcnum"492220703"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typebgn:Thesis
rdf:valueUnknown value: deg
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2003"
schema:description"Cette thèse est consacrée à l'étude de quelques propriétés géométriques du mouvement brownien plan et du processus SLE (ou processus de Loewner stochastique). On prouve qu'il existe presque sûrement sur la trajectoire brownienne plane des points "pivots", i.e. des points de coupure autour desquels l'une des moitiés de la trajectoire peut pivoter d'un angle strictement positif sans jamais rencontrer l'autre moitié; l'ensemble des point pivots d'angle donné (suffisamment petit) est alors de dimension de Hausdorff strictement positive. Concernant le SLE, le principal résultat obtenu dans cette thèse est le calcul de la dimension de Hausdorff de la courbe qui l'engendre (qui est égale à un plus la huitième partie du paramètre), et ceci pour tout paramètre positif différent de quatre et inférieur à huit. On s'intéresse également au problème de la généralisation du processus SLE à des surfaces non simplement connexes; on montre que cela est faisable pour deux valeurs particulières du paramètre (six et huit tiers), mais que l'on perd la propriété d'universalité du SLE usuel."
schema:description"This thesis is dedicated to the study of various geometric properties of planar Brownian motion and the SLE process (also known as stochastic Loewner evolution). We prove that, on a typical planar Brownian path, there almost surely exist "pivoting" points, i.e. cut-points around which one half of the curve can rotate by a positive angle without ever intersecting the other half of the path; the set of all pivoting points of a given positive (small enough) angle is then of positive Hausdorff dimension. About SLE, the main result we obtain in this thesis is the computation of the Hausdorff dimension of the curve generating it (the dimension is equal to one plus one eighth of the parameter), for any positive parameter smaller than eight and different from four. We also study the problem of the generalization of the SLE process to non-simply connected surfaces; we show that the construction is doable for two particular values of the parameter (six and eight thirds), but the universality property of usual SLE 1S then lost."
schema:exampleOfWork<http://worldcat.org/entity/work/id/367030578>
schema:inLanguage"en"
schema:name"Mouvement brownien plan, SLE, invariance conforme et dimensions fractales"
schema:numberOfPages"135"
schema:publication
schema:publisher
wdrs:describedby

Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.