skip to content
Multi-objective optimization : evolutionary to hybrid framework Preview this item
ClosePreview this item
Checking...

Multi-objective optimization : evolutionary to hybrid framework

Author: Jyotsna Kumar Mandal; Somnath Mukhopadhyay; Paramartha Dutta
Publisher: Singapore : Springer, [2018]
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Multi-objective optimization.
Singapore : Springer, [2018]
(OCoLC)1039650628
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Jyotsna Kumar Mandal; Somnath Mukhopadhyay; Paramartha Dutta
ISBN: 9789811314711 9811314713
OCLC Number: 1048897111
Description: 1 online resource (xvi, 318 pages) : illustrations (some color)
Contents: Intro; Foreword; Editorial Preface; Contents; About the Editors; Non-dominated Sorting Based Multi/Many-Objective Optimization: Two Decades of Research and Application; 1 Introduction; 2 Across Different Scenarios; 2.1 Multi/Many-Objective Optimization; 2.2 Single-objective Optimization; 3 Recent Non-dominated Sorting Based Algorithms; 3.2 Other Successful Algorithms; 4 State-of-the-Art Combinations; 4.1 Alternating Phases; 4.2 Two Local Search Operators; 4.3 B-NSGA-III Results; 5 Conclusions; References; Mean-Entropy Model of Uncertain Portfolio Selection Problem. 1 Introduction2 Literature Study; 3 Preliminaries; 4 Uncertain Multi-Objective Programming; 4.1 Weighted Sum Method; 4.2 Weighted Metric Method; 5 Multi-Objective Genetic Algorithm; 5.1 Nondominated Sorting Genetic Algorithm II (NSGA-II); 5.2 Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D); 6 Performance Metrics; 7 Proposed Uncertain Bi-Objective Portfolio Selection Model; 8 Results and Discussion; 9 Conclusion; References. Incorporating Gene Ontology Information in Gene Expression Data Clustering Using Multiobjective Evolutionary Optimization: Application in Yeast Cell Cycle Data1 Introduction; 2 Gene Ontology and Similarity Measures; 2.1 Resnik's Measure; 2.2 Lin's Measure; 2.3 Weighted Jaccard Measure; 2.4 Combining Expression-Based and GO-Based Distances; 3 Multiobjective Optimization and Clustering; 3.1 Formal Definitions; 3.2 Multiobjective Clustering; 4 Incorporating GO Knowledge in Multiobjective Clustering; 4.1 Chromosome Representation and Initialization of Population. 4.2 Computation of Fitness Functions4.3 Genetic Operators; 4.4 Final Solution from the Non-dominated Front; 5 Experimental Results and Discussion; 5.1 Dataset and Preprocessing; 5.2 Experimental Setup; 5.3 Study of GO Enrichment; 5.4 Study of KEGG Pathway Enrichment; 6 Conclusion; References; Interval-Valued Goal Programming Method to Solve Patrol Manpower Planning Problem for Road Traffic Management Using Genetic Algorithm; 1 Introduction; 2 IVGP Formulation; 2.1 Deterministic Flexible Goals; 2.2 IVGP Model; 2.3 The IVGP Algorithm; 2.4 GA Computational Scheme for IVGP Model. 3 Definitions of Variables and Parameters4 Descriptions of Goals and Constraints; 4.1 Performance Measure Goals; 4.2 System Constraints; 5 An Illustrative Example; 5.1 Construction of Model Goals; 5.2 Description of Constraints; 5.3 Performance Comparison; 6 Conclusions and Future Scope; References; Multi-objective Optimization to Improve Robustness in Networks; 1 Introduction; 1.1 Robustness Measures Based on the Eigenvalues of the Adjacency Matrix; 1.2 Measures Based on the Eigenvalues of the Laplacian Matrix; 1.3 Measures Based on Other Properties.
Responsibility: Jyotsna K. Mandal, Somnath Mukhopadhyay, Paramartha Dutta, editors.

Abstract:

This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/1048897111> # Multi-objective optimization : evolutionary to hybrid framework
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
    library:oclcnum "1048897111" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/si> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5390654534#Topic/mathematical_optimization> ; # Mathematical optimization
    schema:about <http://dewey.info/class/519.6/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5390654534#Topic/mathematics_applied> ; # MATHEMATICS--Applied
    schema:about <http://experiment.worldcat.org/entity/work/data/5390654534#Topic/mathematics_probability_&_statistics_general> ; # MATHEMATICS--Probability & Statistics--General
    schema:bookFormat schema:EBook ;
    schema:datePublished "2018" ;
    schema:description "This book brings together the latest findings on efficient solutions of multi/many-objective optimization problems from the leading researchers in the field. The focus is on solving real-world optimization problems using strategies ranging from evolutionary to hybrid frameworks, and involving various computation platforms. The topics covered include solution frameworks using evolutionary to hybrid models in application areas like Analytics, Cancer Research, Traffic Management, Networks and Communications, E-Governance, Quantum Technology, Image Processing, etc. As such, the book offers a valuable resource for all postgraduate students and researchers interested in exploring solution frameworks for multi/many-objective optimization problems."@en ;
    schema:description "Intro; Foreword; Editorial Preface; Contents; About the Editors; Non-dominated Sorting Based Multi/Many-Objective Optimization: Two Decades of Research and Application; 1 Introduction; 2 Across Different Scenarios; 2.1 Multi/Many-Objective Optimization; 2.2 Single-objective Optimization; 3 Recent Non-dominated Sorting Based Algorithms; 3.2 Other Successful Algorithms; 4 State-of-the-Art Combinations; 4.1 Alternating Phases; 4.2 Two Local Search Operators; 4.3 B-NSGA-III Results; 5 Conclusions; References; Mean-Entropy Model of Uncertain Portfolio Selection Problem."@en ;
    schema:editor <http://experiment.worldcat.org/entity/work/data/5390654534#Person/dutta_paramartha> ; # Paramartha Dutta
    schema:editor <http://experiment.worldcat.org/entity/work/data/5390654534#Person/mukhopadhyay_somnath_1983> ; # Somnath Mukhopadhyay
    schema:editor <http://experiment.worldcat.org/entity/work/data/5390654534#Person/mandal_jyotsna_kumar_1960> ; # Jyotsna Kumar Mandal
    schema:exampleOfWork <http://worldcat.org/entity/work/id/5390654534> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1039650628> ;
    schema:name "Multi-objective optimization : evolutionary to hybrid framework"@en ;
    schema:productID "1048897111" ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=5495489> ;
    schema:url <http://dx.doi.org/10.1007/978-981-13-1471-1> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1875797> ;
    schema:url <http://link.springer.com/10.1007/978-981-13-1471-1> ;
    schema:url <https://doi.org/10.1007/978-981-13-1471-1> ;
    schema:workExample <http://dx.doi.org/10.1007/978-981-13-1471-1> ;
    schema:workExample <http://worldcat.org/isbn/9789811314711> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/1048897111> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/5390654534#Person/dutta_paramartha> # Paramartha Dutta
    a schema:Person ;
    schema:familyName "Dutta" ;
    schema:givenName "Paramartha" ;
    schema:name "Paramartha Dutta" ;
    .

<http://experiment.worldcat.org/entity/work/data/5390654534#Person/mandal_jyotsna_kumar_1960> # Jyotsna Kumar Mandal
    a schema:Person ;
    schema:birthDate "1960" ;
    schema:familyName "Mandal" ;
    schema:givenName "Jyotsna Kumar" ;
    schema:name "Jyotsna Kumar Mandal" ;
    .

<http://experiment.worldcat.org/entity/work/data/5390654534#Person/mukhopadhyay_somnath_1983> # Somnath Mukhopadhyay
    a schema:Person ;
    schema:birthDate "1983" ;
    schema:familyName "Mukhopadhyay" ;
    schema:givenName "Somnath" ;
    schema:name "Somnath Mukhopadhyay" ;
    .

<http://experiment.worldcat.org/entity/work/data/5390654534#Topic/mathematical_optimization> # Mathematical optimization
    a schema:Intangible ;
    schema:name "Mathematical optimization"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5390654534#Topic/mathematics_applied> # MATHEMATICS--Applied
    a schema:Intangible ;
    schema:name "MATHEMATICS--Applied"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5390654534#Topic/mathematics_probability_&_statistics_general> # MATHEMATICS--Probability & Statistics--General
    a schema:Intangible ;
    schema:name "MATHEMATICS--Probability & Statistics--General"@en ;
    .

<http://worldcat.org/isbn/9789811314711>
    a schema:ProductModel ;
    schema:isbn "9811314713" ;
    schema:isbn "9789811314711" ;
    .

<http://www.worldcat.org/oclc/1039650628>
    a schema:CreativeWork ;
    rdfs:label "Multi-objective optimization." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/1048897111> ; # Multi-objective optimization : evolutionary to hybrid framework
    .

<https://doi.org/10.1007/978-981-13-1471-1>
    rdfs:comment "SpringerLink. Restricted to UC campuses" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.